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Abstract

Monotone equilibria may be undesirable in Bayesian games in the sense that players
adopt weakly dominated strategies. To account for the possibility that the players
might choose unintended strategies through a trembling hand, we propose an equilibrium

” This notion strengthens the notion of

refinement called “perfect monotone equilibrium.
monotone equilibrium in the sense that it satisfies the important property of admissibility
in Bayesian games with finitely many actions, and the property of limit undominatedness
in Bayesian games with infinitely many actions.

In a general class of Bayesian games where each player’s action set is a sublattice
of multi-dimensional Euclidean space and players’ types are also multi-dimensional, a
perfect monotone equilibrium is shown to exist under the supermodularity and increasing
differences conditions. These conditions model the scenarios in which, informally, players’
payoffs have complementarity in own actions and monotone incremental returns in own
types. We demonstrate that the increasing differences condition is sharp by providing a
two-player game that satisfies the widely adopted single crossing condition in the literature,
but does not possess any perfect monotone equilibrium. To show the usefulness of our
result in the setting with discontinuous payoffs, we provide various illustrative applications,
including first-price auctions, all-pay auctions, and Bertrand competitions. Our result can

be further extended to the setting with more general action spaces and type spaces.
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1 Introduction

As a foundational element of game theory, the model of Bayesian game has provided
a standard analytical tool and found applications across a wide range of fields. Auctions,
for instance, are among the most successful applications of this model. In previous works
on auctions, the focus is often on pure strategy monotone equilibrium, which suggests that
bidders with higher valuations tend to submit higher bids. The existence of pure strategy
monotone equilibrium has been established in Bayesian games with great success. The
seminal work of Athey (2001) first established the existence of a pure strategy monotone
equilibrium based on the single crossing condition. McAdams (2003) generalized this result
to settings with multidimensional and partially ordered type and action spaces. Reny (2011)
discovered contractibility to be automatically satisfied given any nonempty monotone best
responses, and employed a powerful fixed-point theorem to establish the general existence
of pure strategy monotone equilibria.!

While the above approach has proven useful, it can sometimes yield monotone equilibria
that are undesirable. Consider an asymmetric first-price auction with two bidders.
Bidder 1’s private value vy is uniformly drawn from [0,5], and bidder 2’s value wvq is
uniformly drawn from [7, 8]. Each bidder ¢ submits a bid b; € {0,1,2,--- ,8} after observing
her value v;. The bidder who submits a higher bid wins the good, with ties broken randomly.
Here, by = 5 and by = 6 is a monotone equilibrium. To see it, given that bidder 2 bids
6, bidder 1’s payoff is at most 0, achievable by bidding any number lower than 6. When
bidder 1 bids 5, the best response of bidder 2 is to bid 6 for any vs. Thus, (51, 32) is an
equilibrium, which is trivially monotone. However, it is obvious that bidding 5 is weakly
dominated by bidding 0 for bidder 1, as her payoff is at most 0 with a bid of 5 and at least
0 with a bid of 0. When bidder 2 bids 0, bidder 1 is strictly better off by bidding 0. The
equilibrium by =5 and by = 6 is unappealing because it involves weakly dominated actions.

The main purpose of this paper is to study an equilibrium concept called “perfect
monotone equilibrium,” which accounts for the possibility that the players might choose
unintended strategies through a trembling hand, albeit with negligible probability. A
perfect monotone equilibrium strengthens the notion of monotone equilibrium in the
following sense: it satisfies the important property of admissibility in Bayesian games with
finitely many actions, and the property of limit undominatedness in Bayesian games with
infinitely many actions.

In Theorem 1, we prove the existence of a perfect monotone equilibrium in a class of
Bayesian games, where each player’s action set forms a sublattice of a multidimensional
Euclidean space, and their types are multidimensional and atomless. Our equilibrium
existence result relies on two widely adopted assumptions: each player’s interim expected
payoff (1) is supermodular in her own actions; and (2) has increasing differences in her own

actions and types when others adopt monotone strategies. These two assumptions imply

For more applications and developments of monotone equilibria, see, for example, Reny and Zamir (2004),
McAdams (2006), and Prokopovych and Yannelis (2017, 2019).
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that each player’s interim payoff satisfies complementarity in own actions and monotone
incremental returns in own types.

To establish the existence of a perfect monotone equilibrium in a Bayesian game, we
construct a sequence of perturbed games that differ from the limit game in payoff functions.
Importantly, every action in any perturbed game can be seen as a completely mixed action
in the limit game. To obtain a perfect monotone equilibrium in the limit game, we need
to show that each perturbed game retains certain properties from the limit game so that a
monotone equilibrium exists in the perturbed game. As actions in the perturbed game are
interpreted as completely mixed actions in the limit game, those properties must persist
under expectations. The increasing differences condition is one such cardinal condition,
which is stronger than the single crossing condition (SCC) in Athey (2001), McAdams
(2003) and Reny (2011).2 As remarked by Milgrom and Shannon (1994), the single crossing
condition is not easy to work with, and they provided characterizations for the increasing
differences condition. In particular, it is well known that the single crossing condition
is an ordinal property that might not hold under expectations.® To demonstrate that
the increasing differences condition is tight, we provide a counterexample of a two-player
Bayesian game in Section 5.1. This example satisfies the single crossing condition, while the
increasing differences condition fails only for one player, and a perfect monotone equilibrium
fails to exist.

In several important applications of Bayesian games, players’ payoffs are often
discontinuous. For example, in first-price auctions for a single object, a bidder experiences
a discrete change in payoffs when her bid shifts from being below opponents’ highest bid
to above it. Similarly, in price competitions, a firm’s market share can jump significantly
if its price slightly undercuts the current market price. Due to the payoff discontinuities,
Theorem 1 does not apply directly to these environments. In Section 4, we offer three
illustrative economic applications with affiliated types and a continuum of actions — first-
price auction, all-pay auction, and Bertrand competition — to demonstrate how our results
can be used to establish the existence of perfect monotone equilibria in Bayesian games
with discontinuous payoffs.

Finally, we provide two extensions. In the first extension, we consider the setting with
one-dimensional action spaces and type spaces as in Athey (2001). When a game has
independent private values, it is shown that a perfect monotone equilibrium exists under
the weaker single crossing condition. In the second extension, we extend our Theorem 1
to general Bayesian games as in Reny (2011), where the action spaces are compact locally
complete metric semilattices and the type spaces are partially ordered probability spaces.
We show that the equilibrium existence result continues to hold in this more general setting.

Our paper is related to the literature that provides equilibrium refinement aiming to

eliminate undesirable equilibria. The classic work of Selten (1975) proposed the notion of

2The condition of supermodularity automatically holds in the single-dimensional setting as in Athey (2001).
3For further discussions, see Quah and Strulovici (2012) among others.



perfect equilibrium by introducing completely mixed strategies. Simon and Stinchcombe
(1995) studied the possible issues with the notion of perfect equilibrium in strategic form
games with compact action spaces. They discussed two essentially different approaches
and investigated the relations among the various solution concepts. Bajoori, Flesch and
Vermeulen (2013) examined the two approaches proposed in Simon and Stinchcombe
(1995) in further details. Bajoori, Flesch and Vermeulen (2016) considered the notion of
perfect equilibrium and discussed the properties of admissibility and limit undominatedness
in Bayesian games.? All those papers do not invoke the monotone method, while our
paper focuses on monotone strategies in Bayesian games and studies the notion of perfect
monotone equilibrium.

There is another stream of literature on Bayesian games with strategic complementarity,
which focuses on the existence of pure strategy equilibria and monotone comparative statics
in supermodular games; see, for example, Milgrom and Roberts (1990), Vives (1990) and
Milgrom and Shannon (1994). However, in these works, the strategies themselves need not
be monotone in types.® In the current paper, we develop monotone methods applying to
Bayesian games that may fail to exhibit complementarity across actions, but satisfy the
monotone incremental returns in own type when others adopt monotone strategies.

This paper is also related to the literature that aims to provide sufficient conditions
for the existence of equilibria in Bayesian games. Radner and Rosenthal (1982) worked
with the conditions of independent atomless types and private values. Milgrom and Weber
(1985) allowed for payoffs with private values and correlations among the players by working
with conditionally independent types. He and Yannelis (2016) and Carbonell-Nicolau and
McLean (2018) studied Bayesian games with discontinuous payoffs. Fu and Yu (2018)
provided sufficient conditions that ensure the existence of Pareto-undominated and socially-
maximal pure strategy equilibria. He and Sun (2019) introduced a general condition called
“coarser inter-player information” and showed that it is necessary and sufficient for the
existence of pure strategy equilibria. All those papers do not consider monotone strategies
or perfect equilibria.

The remainder of the paper is organized as follows. Section 2 introduces the model
of Bayesian games and the notion of perfect monotone equilibrium. Section 3 presents
the key condition and proves the existence of perfect monotone equilibrium. In Section 4,
we provide applications in auctions and price competitions. Section 5 includes further
examples. In Section 6, we discuss one extension in the independent private value setting
and another extension in the setting with general action and type spaces. The proofs are

left in Appendix.

4The notion of perfect equilibrium has also been studied in other general environments; see, for example,
Carbonell-Nicolau (2011) for discontinuous games, Carbonell-Nicolau and McLean (2014) for potential games,
and Rath (1994, 1998) and Sun and Zeng (2020) for large games.

5Tt was further shown in Van Zandt and Vives (2007) that in the class of monotone supermodular games the
extremal pure strategy equilibria are monotone in types. An algorithm is provided to compute those equilibria.



2 Bayesian Games

In this section, we examine a class of general Bayesian games, where each player’s
action set forms a sublattice of a multidimensional Euclidean space, and their types are

multidimensional and atomless.

2.1 Model

Before introducing the model, we first introduce the concept of lattices. Let (L, >) be
a partially ordered set. For any S C L, let V.S denote the least upper bound of S in L (if
it exists), satisfying

e VS > s for any s € S, and

e force L,if ¢ > s for any s € S, then ¢ > VS.
Similarly, let AS denote the greatest lower bound of S in L (if it exists), satisfying

o NS <, forall selS,

e forallce L, if c < s forall s €5, then ¢ < AS.
For example, if S = {a,b}, then a Vb= VS and a A b= AS.
Definition 1. 1. A lattice is a partially ordered set (L,>) such that for all a,b € L,

avVbeL andaNbe L.

2. A subset E of L is a sublattice if E forms a lattice; that is, for any a,b € E, aVb e E
andaANbe E.

3. A sublattice E is complete if and only if for all S C E, VS € E and AS € E. FEvery

finite sublattice is complete.
Now we are ready to present the formal model of Bayesian games.

e The set of players is denoted by I = {1,2,...,n}, n > 2.

e For each i € I, the action space of player i is A;, which is a complete sublattice in

some Euclidean space R® with respect to the product order.® Denote A = [T, A

e Player i’s type t; is drawn from the type space T; = [0, 1]! for some [ € Z,.” Denote
T = [[;, T;. The joint density function f: T'— Ry on types is bounded above by
M and bounded below by M > 0. The type space is endowed with the product order
and the usual Euclidean topology. The marginal distribution on player i’s type space
is denoted by A;; that is, for any Borel set B; C Tj,

A(B;) = / /B | F(tilt_s) dt; dt_;.

SFor any two elements z,y € A;, * = (x1,72,...,7s) and y = (y1,¥2,.--,Ys), T > y in the product order if
and only if z; > y; for j € {1,2,...,s}, and = > y if and only if x > y and = # y.

"The assumption of a common type space is made purely for simplicity. All results can be extended to the
setting where players have different type spaces of varying dimensionality.
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e Given action profile a € A and type profile ¢ € T, the payoff of player i is u;(a,t),

which is bounded, jointly measurable, and continuous in a.

e For each player i € I, a behavioral strategy (resp. pure strategy) is a measurable
mapping from 7; to M(A;) (resp. A;), where M(A;) is the set of probability measures

on A;.

e A monotone (or increasing) strategy «; is a pure strategy increasing in player i’s types;
that is, oy (t#) > a;(tl) for t# > tF. For each i € I, let F; be the set of monotone
strategies of player 4. As usual, ' = [[;_; 7 and F_; = [[, 4 ic; F;-

e Given a strategy profile g = (g1, ..., 9gn), the interim payoff of player i depends on her

own action a;, own type t;, and other players’ strategies g_;,

Vz’(az’,ti;gi)Z/ / ui(ag, ai, ti,t—;) ® gi(ty,dag)f(t_ilt;) di_.
T i JA_; Jelj#i

Player i’s expected payoff is
Ui(g) = /T /A Vi(ai, ti; g-i)gi(ti, dag) Ai (dt;)

where ); is the marginal on T;.

Let BR;(t;, g—;) be the collection of best responses to a strategy profile g_; at player i’s
type t;, and BR;(g—;) be the collection of player i’s best responses to a strategy profile g_;.

Definition 2. 1. A Bayesian Nash equilibrium is a strategy profile g* = (g7, 4, --,9.)
such that g7 € BR;(g*;) for every player i € I. Moreover, if g* = (91,95,-..,9;) 5 @

pure strategy profile, then g* is a pure strategy Bayesian Nash equilibrium.

2. A monotone equilibrium is a pure strategy Bayesian Nash equilibrium g* = (g7, 95, - -, g5;)

with g} being an increasing strategy for each player i € I.

2.2 Perfect monotone equilibrium

Throughout this paper, we will focus on monotone equilibria. However, as demonstrated
via the illustrative example in the introduction, monotone equilibria do not rule out the
possibility that players might choose weakly dominated strategies. To address this issue, we
strengthen the notion of monotone equilibrium by requiring that such equilibria be perfect,
which is one of the most commonly used refinement of Nash equilibria.

A strategy profile g = (g1,...,9n) is called a completely mixed strategy profile if for
each player i, each t; € T;, and any nonempty open subset O; of A;, g;(t;, O;) > 0.

Definition 3 (Monotone Perfection). a. A strategy profile g = (91,92, - ,9n) is said
to be perfect, if there ewists a sequence of completely mized strategy profiles {gF =
(g, g5, - L gE)I2, such that for every player i and \i-almost all t;, the following
properties hold.



(1). lim p(gf(tiy),BRi(ti,gﬁi)) = lim inf p(gF(ti,),0:) =08
k—o00 k—o00 aiEBRi(tivglii)

(2)- lim p(g; (ti,), gi(ti; ) = 0.
—00

b. A strategy profile g is called a perfect equilibrium if g is both perfect and a Bayesian

Nash equilibrium.

c. A strategy profile g is a perfect monotone equilibrium if it is both perfect and a

momnotone equilibrium.

The above notion of perfect equilibrium (i.e., (a) and (b)) is standard in the literature;
see Selten (1975) and Simon and Stinchcombe (1995) for normal-form games and Bajoori,
Flesch and Vermeulen (2016) for Bayesian games. We strengthen this notion in (c¢) by

requiring the equilibrium be monotone.

3 Main Results

In this section, we provide sufficient conditions to guarantee the existence of perfect
monotone equilibria. In particular, it is shown that when the other players adopt
monotone strategies, if player ¢’s payoff satisfies the conditions of increasing differences
and supermodularity for each ¢ € I, then a Bayesian game possesses a perfect monotone

equilibrium.

Definition 4 (Supermodularity). Let (X,>,V,A) be a lattice, and © an index set. A
function h: X x © — R is supermodular in x (or SPM(x)) if and only if for any x,2’ € X
and 0 € O,

h(z V' 0)+h(z A2, 0) > h(z,0) + h(z',0).

Definition 5 (Increasing differences). Let (X,>,V,A) be a lattice, (Y,>) a partially
ordered set, and © an inder set. A function h: X XY x © — R satisfies increasing
differences condition (IDC) in (z,y) € X x Y if and only if for any 2’ > z, y >y, and
e,

h(a'y',0) — h(z,y',0) > h(z',y,0) — h(z,y,0).

Assumption 1. For each ¢ € I and monotone strategies g—; € F_;, player i’s interim
payoff Vi(ai, ti; g—i())
1. is supermodular in a; for any t; € T;, and

2. has increasing differences in (a;,t;).

Remark 1. o If A; CR, then Assumption 1 (1) is trivially satisfied.

8Here p is the Prohorov metric: for v, u € M(A4;),
p(v, 1) = inf{e: v(B) < pu(B°) 4+ € and u(B) < v(B°) + € for any Borel set B C A;},

where d is the Euclidean metric, B¢ = {b € A;: d(b, B) < €} and d(b, B) = infycp d(b, V).
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o Assumption 1 is slightly weaker than assuming that Vi(a;,t;; g—i(+)) is supermodular
in (a;,t;). To see it, note that given g—;, if Vi(a;, t;; g—i(+)) is supermodular in (a;,t;),
then it is clear that V; has increasing differences in (a;,t;); but the converse is not

true.
The following theorem presents the existence result of perfect monotone equilibrium.
Theorem 1. A perfect monotone equilibrium exists under Assumption 1.

Remark 2. The notion of perfect monotone equilibrium refines the notion of monotone
equilibrium. The existence of monotone equilibria has been extensively studied in the
literature. Athey (2001) provided sufficient conditions for the existence of a monotone
equilibrium in the one-dimensional setting. McAdams (2003) obtained the equilibrium
existence in settings with multidimensional actions and multidimensional types. Reny
(2011) established the existence of a monotone equilibrium in a very general setting.

These papers work with the (weak) single crossing condition,”

which s slightly weaker
than the condition of increasing differences. McAdams (2003) further assumed quasi-
supermodularity for interim payoff function V;. Note that the supermodularity condition
is automatically satisfied in Athey (2001), which focuses on the single dimensional setting.

Topkis (1978) indicated that supermodularity and the increasing differences condition
can be easily characterized by smooth functions. Milgrom and Shannon (1994) pointed out
that quasi-supermodularity and the single crossing condition may seem abstract and not
easy to check, and instead provided characterizations for supermodularity and increasing
differences condition. In Section 5.1, we provide an example to demonstrate that the
increasing differences condition is sharp in the general setting. In this example, (1)
players have single dimensional independent types and interdependent payoffs; (2) the single
crossing condition holds for all the players; (3) the increasing differences condition fails for
one player; but (4) there does not exist a perfect monotone equilibrium.

In Section 6.1 below, we study the specific IPV setting; that is, Bayesian games with
independent private values. We show that in this classic setting, the existence of a perfect
monotone equilibrium can be obtained under the single crossing condition.

Our result can be extended to the more general setting in which the action spaces are
compact metric spaces and the type spaces are general measure spaces. We choose to work
with the Fuclidean space in Theorem 1 for simplicity. In Section 6.2, we show that the
above equilibrium existence result still holds in the general environment as in Reny (2011)

under our Assumption 1.

Remark 3 (The key of the proof). To prove the existence of a perfect monotone equilibrium
in the game G, we construct a sequence of games {G™}>°_, converging to G. The key of

the construction is summarized below.

9Given g_;, player i’s interim payoff satisfies the single crossing condition in Milgrom and Shannon (1994)
if for aff > af and tH > tE, Vi(a® tE g () — Vi(al,tE,9-4(-)) > (>)0 implies that V;(aX ¢t g_;(-)) —

Vi(aF tH g_;(-)) > (>)0. Reny (2011) adopted a weaker version of this condition.
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o Fach G™ is a slight perturbation of G in the following sense. The game G™ differs
from the limit game G only in its payoff functions: when players play the action profile
a at type profile t, player i’s payoff ul*(a,t) in G™ equals u;(a™,t), where aj' is a
completely mixed strategy putting probability 1 — % at the action a; for each player j.

o [t is shown that each game G™ satisfies Assumption 1 above, and has a monotone

equilibrium g™ . Importantly, g™

can be interpreted as a completely mixed strategy g™
in the game G such that g"* is an approzimate best response of g™, for each player i.
The sequence {g™} has a convergent subsequence {g"*}3° | with the limit g. We show

that g is a perfect monotone equilibrium in the original game G.

By interpreting g™ as a completely mized strategy g™ in the game G, the expected payoff
based on G inherits the increasing differences condition, which is a cardinal property. On
the other hand, it is well known that the single crossing condition is an ordinal property,

which often fails to hold when taking expectations.

If the action set A; is finite for each ¢ € I, then it is well known that any perfect
equilibrium satisfies the desirable feature of admissibility; that is, players do not play weakly
dominated strategies.'? However, if the action sets are not finite, then an admissible perfect
equilibrium may fail to exist. This issue has been demonstrated in Simon and Stinchcombe
(1995, Example 2.1), and still appears even if one considers monotone equilibria. In
Example 4 below, we provide a countable-action Bayesian game with an inadmissible perfect
equilibrium. To deal with this issue, in the infinite-action setting we adopt the notion of
limit undominatedness from Bajoori, Flesch and Vermeulen (2016).

For each player ¢ € I, an action a; € A; is said to be weakly dominated if there exists

a probability measure o; € M(A;) such that for A\;-almost all ¢;,
(1). Eq_,(ui|ti, a;) < Eq_,(u4[ti, 0;) for any strategy profile g_;; and
(2). there exists a strategy profile §g_; such that Ey  (u;|ti, a;) < Ey_, (us|ts, 03).

i i

A probability measure o; € M(A;) is said to be undominated for a type ¢; if there is no
probability measure in M(A4;) that weakly dominates o;.

Definition 6. 1. Admissibility. A strategy profile g is said to be admissible if
the induced action distribution [5. gi(t;)Ai(dt;) puts zero probability on any weakly

dominated action for each player i € I.

2. Limit undominatedness. A strategy g; is called limit undominated if there is a
measurable set S; C T; with A\i(S;) = 0 such that for any t; € T;\S;, there is a
sequence of undominated probability measures {Jf}kzl on the action space A; for
which p(o¥, gi(ti,-)) — 0 as k — oo. A strategy profile g = (g1,92,"+ ,gn) is called

limit undominated if g; is limit undominated for every player i.

Corollary 1. 1. If A; is finite for each i € I, then any perfect monotone equilibrium is

admissible.

0For completeness, we formalize this statement as Lemma 1 and provide a proof in Appendix.
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2. If A; is a complete sublattice in R®, then any perfect monotone equilibrium is limit

undominated.

4 Discontinuous Bayesian Games

In many important applications of Bayesian games, such as auctions and price
competitions, it is natural to consider monotone equilibrium as players with higher
valuations/costs are inclined to submit higher bids/charge higher prices. However,
Theorem 1 cannot be directly applied to those applications, because the payoffs often
exhibit discontinuity when a tie occurs. In this section, we shall demonstrate how to apply
our result to show the existence of perfect monotone equilibria in various economic settings
with discontinuous payoffs, such as first-price auctions, all-pay auctions, and Bertrand

competitions.

First-price auctions

Consider the following first-price single-unit auction with affiliated types. There are
n > 2 bidders. The value of bidder i is v; € [0,1]. The joint density for bidders’ values is
f:10,1]™ — R4. Players have affiliated types. That is, for any value profiles v and v/,

flov) - flund) > fv) - f(').

After receiving their values, each bidder i submits a bid b; from {Q} U [b;,b;], where
Q < b; <0 and @ corresponds to not participating in the auction. The bidder submitting
the highest bid above ) wins the object, with tie-breaking done randomly and uniformly.
If bidder 7 wins the object, then her payoff is v; — b;. Otherwise, bidder ¢ receives payoff 0.
To be precise, the payoff of bidder i is

$(Ui — bi), if b; = max ey bj > Q,

uz(ba U) = ¢ #Il
0, otherwise,

where I¥ ={ieI: b = max b; > @} is the set of bidders submitting the highest bid above
jE
Q.

Proposition 1. A perfect monotone equilibrium exists in first-price auctions with affiliated

types.

All-pay auctions

Next, we consider an all-pay auction game with interdependent payoffs and affiliated
types. Each bidder i receives a private signal ¢; € T; = [0,1]. The joint density
is f:[0,1]" — Ry. After receiving their signals, each bidder i submits a bid from
B; = {Q} U [b;, b;], where the quit option Q < b; for all i.

11



The bidder submitting the highest bid above () wins the object, with tie-breaking done
randomly and uniformly. All the bidders who bid above Q need to pay their bids. If
bidder i wins the object at bid b;, then her payoff is given by w;(b;,t) — b;; otherwise,
bidder ¢ receives payoff —b;. If bidder ¢ quits the game, then she receives payoff 0. In
particular, bidder i’s payoff is

rewilbist) —bi, i b = maxjerb; > Q;

—b;, otherwise.

We make the following assumption on the payoff functions.

Assumption 2. 1. The payoff function w; is bounded and measurable on [b;, b;] x [0, 1],

and continuous in b; for each t € [0, 1]".
2. The function w;i(b;,t) is increasing in t—_; and strictly increasing in t;.

3. The difference w;(bl,t) — w;(bF,t) is increasing in t whenever b > bl > b,.

Proposition 2. Under Assumption 2, an all-pay auction with affiliated types possesses a

perfect monotone equilibrium.

Bertrand competitions with unknown costs

The third application is a price competition game in which firms have private costs.
There are n firms that compete by setting prices p; € [0,p;], where p; > 1 for each i. Each
firm 4 knows its marginal cost ¢; € [0,1]. The joint density is f: [0,1]" — R. The market
demand is given by D(p), where p = (p1,p2, -+ ,pn), and D(p) is continuous in p.

If p; = 1I§nji£n pj, then D;(p) = #{%jplm}. Otherwise, D;(p) = 0. The demand function
D;(p) is increasing in p_; and decreasing in p;. Firm 4’s profit is

u;(¢i, iy p—i) = (pi — ¢i)Di(p)-

Proposition 3. The Bertrand competition with affiliated unknown costs has a perfect

monotone equilibrium.

Remark 4. Given a Bayesian game G with discontinuous payoffs, the proofs for the
propositions above proceed as follows. We first repeat the argument in Remark 3 to construct
a sequence of perturbed games {G™}, and then further discretize G™ to {G™*}1>1 for each
m > 1.

1. In each G™, o monotone equilibrium g™ ezists.

2. Taking k — oo, we get a monotone strategy g™ in G™, which can be interpreted as a

completely mized strategy in G.

12



8. Taking m — oo, we get a monotone strateqy g in G. The aim is to show that g is an

equilibrium in the original game G.

The difficulty in this double-limit approach is that g™ may not be an equilibrium in G™
in the second step. In the literature, to make sure that the limit monotone strategy g™ is
an equilibrium in G™ when invoking this kind of asymptotic argument, a key step is to
show that player i’s interim payoff at (almost all) type t; by taking action g"(t;) against
g™ is nonnegative, as otherwise player i can choose to quit (see, for example, Reny and
Zamiar (2004)). In our game G™, as g™ is interpreted as a completely mized strategy in
G, player i’s payoff induced by g™ is written as the summation of countably many payoff
terms. This summation is still nonnegative. However, to adopt the standard limit argument
in the literature, we need every term in this summation to be nonnegative, which may not

be true. We show that this issue can be addressed in a large class of applications.

5 Examples

5.1 A Bayesian game satisfying SCC but has no perfect

monotone equilibrium

Below, we provide a simple Bayesian game, in which there are only two players and
each player has binary actions. We shall verify that each player’s interim payoff satisfies
the single crossing condition when opponents adopt monotone strategies, and only player 1’s
payoff violates the increasing differences condition. This game has a monotone equilibrium,
but has no perfect monotone equilibrium. It demonstrates that the increasing differences

condition is in general sharp.

Example 1. There are two players {1,2}. Their types are independently and uniformly
drawn from the unit interval [0,1]. Let t; denote player i’s type. Both players have binary
actions {1,2}. The payoff tables are given below.

Player 2 Player 1
1 2 1 2
1 5 _ étl L lt2 1] -1 7
Player 1 T L2 Player 2
Y 2 [ Bl _Tp (244, — 1 Y 21 [ -1
Table 1: Player 1’s payoff Table 2: Player 2’s payoff

Note that player 2’s payoff does not depend on types, and thus the increasing differences
condition holds. The supermodularity condition is trivially satisfied as both players have

single dimensional action spaces.

Claim 1. 1. The game satisfies the single crossing condition, but not the increasing

differences condition.
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2. This game has a unique monotone equilibrium.

3. This game does not possess any perfect monotone equilibrium.

5.2 Two auction games with both perfect and imperfect

monotone equilibria

In this section, we provide two examples of auction games. Both examples possess
imperfect monotone equilibria. It will be clear that the examples satisfy Assumption 1.
Thus, both examples also have perfect monotone equilibria. The first example revisits the
motivating example of the first-price auction in the introduction. The second example is a

second-price auction in the IPV setting.

Example 2 (First-price auction). There are two bidders. Bidders 1’s valuation vy is
uniformly drawn from the interval [0,5], and bidder 2’s valuation vy is uniformly drawn
from the interval [7,8]. The action spaces for both bidders are {0,1,2,--- ,8}. The bidder
who submits a higher bid wins the good and pays his bid. If they offer the same bid amount,
then the two bidders break the tie by flipping a coin.

In the introduction, we have provided a monotone equilibrium that is imperfect. Below,

we provide a perfect monotone equilibrium for this first-price auction.

Claim 2. The strategy profile

0 v €l0,3),
bi(vi) =491 v €[3,3), and ba(v2) =3
3 v €[3,5];

s a perfect monotone equilibrium.
In the following, we provide another example of a second-price auction.

Example 3 (Second-price auction). There are two bidders. Bidders 1 and 2’s valuations
v1 and ve are uniformly drawn from the interval [1,2]. The action spaces for both bidders
are {0,1,2}. The bidder who offers a higher bid wins the good and pays another bidder’s
bid. If they offer the same bid amount, then they win the good by flipping a coin.

It is clear that 131 =0 and 132 = 2 forms a monotone equilibrium. Given that bidder 2
always bids 2, bidder 1’s payoff is at most 0. Conversely, if bidder 1 always bids 0, then
bidder 2’s highest payoff is ve, achievable by bidding 2. However, bidding 0 is weakly
dominated by bidding 1 for bidder 1. In particular, the payoff of bidder 1 when he submits
a bid 0 is always less than or equal to his payoff when he submits a bid 1. When bidder 2
submits 0, bidder 1’s payoff strictly increases by bidding 1. Therefore, by=0and by =2 s

an imperfect monotone equilibrium.
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In the following, we provide a perfect monotone equilibrium for this second-price

auction.

Claim 3. The strategy profile

fori € {1,2} is a symmetric perfect monotone equilibrium.

6 Extensions

In this section, we study two extensions of Theorem 1. The first extension focuses on
the setting with one-dimensional action spaces and type spaces as in Athey (2001). We
show that the single crossing condition is sufficient for the existence of a perfect monotone
equilibrium in Bayesian games with independent private values. The second extension
concerns with Bayesian games with general action spaces and type spaces as in Reny (2011).

We generalize Theorem 1 to this more general environment.

6.1 Bayesian games with one-dimensional action spaces and

type spaces

We focus on a class of Bayesian games with one-dimensional action spaces and type

spaces. For simplicity, we shall only describe the differences from the model in Section 2.1.

e For each player ¢ € I, the action space is A;, which is a compact subset of R. Denote

a; = minA; and @; = maxA4;.
e The type space of player i is T; = [t;, t;].
Assumption 3 (IPV). For eachic I,
1. player i has private values: u;(a,t) = u;(a,t;); and
2. types are independent: f(t) = fi(t1)... fu(tn), where f; is the density for player i’s
type t;.
Assumption 4 (SCC). For each i € I, player i’s interim payoff Vi(a;, ti; a—i(+)) satisfies

the single crossing condition in (a;,t;) for any a—; € F_;.

Theorem 2. Suppose that Assumptions 3 and 4 hold. For each player i € I, if either A;
is finite, or A; = [a;,a;] and u;(a,t) is continuous in a, then there exists a perfect monotone

equilibrium.
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Remark 5. Recall the discussions in Remark 3. To show the ezistence of a perfect
monotone equilibrium in a game G, we construct a sequence of games {G™}>°_, that
converges to G, where each game G™ differs from G only in its payoff. By imposing
the increasing differences condition on Vi(a;, ti; g—i(+)), we can show that V" (a;, ti; g—i(-))
also satisfies the increasing differences condition. It further implies that V" (a;, ti; g—i(-))
satisfies the single crossing condition. In the single-dimensional setting, one can apply
Theorems 1 and 2 in Athey (2001) to obtain a monotone equilibrium in G™. This argument
would not work in general if Vi(a;, ti;9—i(-)) only satisfies the single crossing condition.
Howewver, in the IPV setting, it can be shown that SCC on the payoff V; implies SCC on
the payoff V™. As a result, we are able to weaken the increasing differences condition to
the single crossing condition and obtain Theorem 2.

In Exzample 1 above, player 1 has an interdependent payoff that depends on both players’
types. The interim payoff V1 satisfies the single crossing condition, but not the increasing

differences condition. As shown in Claim 1, there is no perfect monotone equilibrium.

6.2 Bayesian games with general action spaces and type
spaces

Below, we follow Reny (2011) to study a class of Bayesian games with general action
spaces and type spaces. The action spaces are compact locally complete metric semilattices
and the type spaces are partially ordered probability spaces.

Let (L, >) be a partially ordered set. If L is endowed with a sigma-algebra £, then the
partial order > on L is called measurable if the set {(a,b) € L x L: a > b} € L® L. The
partial order > on L is called closed if {(a,b) € L x L: a > b} is closed in the product
topology on L x L. The partial order > is called convex if L is a subset of a real vector
space and {(a,b) € L x L: a > b} is convex.

We say that L is a semilattice if every pair of points in L has a least upper bound in
L. A lattice is a semilattice. If L is a semilattice endowed with a metric d and the join
operator V is a continuous function from L x L to L, then L is a metric semilattice. A
semilattice L is complete if and only if the least upper bound VS € L for every nonempty
subset S C L. A metric semilattice L is locally complete if for every a € L and every
neighbourhood U of a, there is a neighbourhood W of a contained in U such that every
nonempty subset S C W has a least upper bound VS in W.

Next, we describe Bayesian games with general action spaces and type spaces.
e The player space is I = {1,2,...,n}, n > 2.

e For each ¢ € I, the action space of player ¢ is A;, which is a compact metric space and

a semilattice with a closed partial order.

e Either (i) A; is a convex subset of a locally convex topological vector space and the
partial order on A; is convex; or (ii) A4; is a locally complete metric semilattice. It is

possible for (i) to hold for some players and (ii) to hold for others.
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e The type space of player i € [ is T; endowed with the o-algebra 7;. The set T; is

partially ordered, and the partial order on 7T; is measurable.

e The common prior over the players’ type spaces is a countably additive probability
measure A on 1. Let (T;,7;,\;) be an atomless probability space, where \; is the

marginal of A on T; for each ¢ € I.

e There is a countable subset TiO of T; such that every set in 7; with positive probability

under \; contains two points between which lies a point in Tio.11

e Given the action profile a € A and type profile t € T, player i’s payoff is u;(a,t),

which is bounded, jointly measurable, and continuous in a for every ¢t € T
Theorem 3. Under Assumption 1, there exists a perfect monotone equilibrium.

Remark 6. To prove Theorem 3, we repeat the argument outlined in Remark 3. Recall
that a sequence of games {G™} is carefully constructed to converge to the limit game
G. Fach game G™ also satisfies Assumption 1. Reny (2011) proved the ezistence of
monotone equilibria by assuming that each player i’s interim payoff satisfies weak quasi-
supermodularity and weak single crossing condition. Our Assumption 1 is stronger than
the weak quasi-supermodularity and weak single crossing condition. Thus, there exists a
monotone equilibrium in G™, which is interpreted as a completely mized strategy in G. By
(possibly) passing to a subsequence, we get a monotone equilibrium in the limit game G that
s also perfect. As the argument is almost the same as the proof of Theorem 1, we omit it

for simplicity.

7 Conclusion

In this paper, we propose an equilibrium refinement called “perfect monotone equi-
librium” to address the issue that players may choose weakly dominated strategies in
monotone equilibria. In Bayesian games with finitely many actions, a perfect monotone
equilibrium is admissible; in Bayesian games with infinitely many actions, a perfect
monotone equilibrium is limit undominated.

In a general class of Bayesian games where each player’s action set is a sublattice of
multi-dimensional Euclidean space and players’ types are also multi-dimensional, to prove
the existence of a perfect monotone equilibrium, we make two widely-adopted assumptions:
players’ payoffs are supermodular in own actions and have increasing differences in own
actions and types. These two assumptions imply complementarity in own actions and
monotone incremental returns in own types. We demonstrate that our condition is sharp
via counterexamples. To show the usefulness of our result in economic settings, we
provide various illustrative applications, including first-price auctions, all-pay auctions,

and Bertrand competitions. Our result can be further extended to the IPV setting as in

"For a,b,c € L, we say that b lies between a and c if a > b > c.
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Athey (2001), and the more general setting as in Reny (2011) where the action spaces
are compact locally complete metric semilattices and the type spaces are partially ordered

probability spaces.
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8 Appendix

8.1 Proof of Theorem 1 and Corollary 1

We first present the proof of Theorem 1, organized into three distinct steps. In Step 1,
we construct a sequence of Bayesian games, {G™}°°_,, that converges to the limit Bayesian
game G, where G™ differs from G only in its payoff functions. In Step 2, we demonstrate
that each G™ possesses a monotone equilibrium ¢™, and we establish the existence of a
subsequence of {g™}o°_; that converges to an increasing strategy g. In Step 3, we show
that g is a perfect equilibrium. Given that g is an increasing strategy, it follows that g
is a monotone equilibrium and, therefore, a perfect monotone equilibrium, completing our

proof.

Step 1. Since A; is a complete sublattice, and thus a compact metric space, for each i € I,
there exists a countable dense subset S; C A;, where S; = {sf}i"zl For each a; € A; and
m € N let @ denote a completely mixed probability measure on A; putting probability
1— = on action a;, where a]" = (1 — %)(5@1 + % Y orey 2%535;. In game G™, player i’s payoff
functlon is u"(a,t), and

ua,t) =u(a™ )= > ... > al(s1)---al(sn)ui(st, ..., snt).

s1€51U{a1} sn€SpU{an}

Clearly, u!™ converges pointwise to u;.

Step 2. Given any increasing strategy profile ¢. For each m € N, i € I, let ¢" =
(1-— %)d)z + % ppaity 2%(2,1; be a completely mixed strategy profile. Let F; = {0}, be a
set of dirac measures on A;. Then we have V" (a;, t;; ¢—i(-)) = Vi(a]", ti; ¢™;), where

Vi(al, ti; o) = Y Yo A (sl () - o (pa)Vilsis tisp—i(-),

si€8;U{as} j#i,p; €F;U{¢;}

and each p; is an increasing strategy of player j. Notably, (1) if Vj(ai, ti;¢—i(:)) is

supermodular in a;, then V™ (a;,t;; ¢—i(+)) is also supermodular in a;; (2) if Vi(ai, ti; ¢—i(+))

satisfies IDC in (a;,t;), then V™ (a;, t;; ¢—i(-)) also satisfies IDC in (a;,t;). By Reny (2011,

Theorem 4.1 and Propositon 4.4), we know that G"™ possesses a monotone equlhbrlum
. Applying Helly’s selection theorem, there exists a subsequence {g"*}5%° _, of {¢g"

such that {gmk}ﬁk:1 converges to a measurable monotone strategy g for ahnost all t € T

Consequently, we have klirilo p(g:" (ti,+), 9i(ti,-)) = 0, for each player 4, for almost all ¢;.

Step 3. For each m € N, let g/* = (1 — —)gl + = Zk 1 21k(5 ke Clearly, g* is a sequence

of completely mixed strategy profiles. By combmmg the definition of g g;" with the fact that

hm p(9;"* (ti, ), gi(ti, ) = 0, we obtain khm p(9;" (ti, ), 9i(ts, -)) = 0, for each player i, for
— 00

almost all t;. Note that ¢ is an equilibrium of game G™ for each m € N, meaning that

for almost all ¢;, V(g™ (t:),t:; ™) > V™ (ai, ti; g™) for all a; € A;, which equivalents to

7

Vi@ (ti), ti, g) > Vi(a™, t, ) for all a; € A;. By the definitions of g and a", the
above formula implies that V(g2 (ti),ti,g™) > Vi(a;, ti, g™) for all a; € A;. Thus, we have

k—o00 k—o00
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By the inequality V™ (g™ (i), ti; g™) > V™ (as, ti; ¢™), and letting m tend to infinity, we
conclude that ¢ is an equilibrium of game G, and therefore ¢ is a perfect equilibrium.
Since g is a monotone strategy, it follows that ¢ is a perfect monotone equilibrium. This
completes the proof of Theorem 1.

Bajoori, Flesch and Vermeulen (2016) presented an example of a two-player game with a
unique Nash equilibrium in which both players adopt a weakly dominated strategy, making
the equilibrium inadmissible. We revisit their example in Example 4, demonstrating the
existence of a unique inadmissible perfect equilibrium. Since a perfect equilibrium may not
necessarily be admissible, they introduced the concept of “limit undominated” and proved
that any perfect equilibrium is limit undominated if for each ¢ € T', the payoff functions
u;(a,t) is continuous in a. Their proof of limit undominated further pointed out that if a
probability measure o; is a best response for player ¢ against a completely mixed strategy
profile at some type t;, then o; is undominated. Corollary 1 follows from the following
lemma.

Lemma 1. A perfect equilibrium is admissible if A; is finite for each i € I.

Proof. Suppose an action a; € A; is weakly dominated, meaning that there exists a
probability measure o; € M(A;) such that for \; almost all ¢;,

(1). Eg_,(uilts, ai) < Eq ,(uiti, 0i), for any strategy profile g_;;

(2). there exists a strategy profile g_; such that E; | (u;|ti, a;) < Eg , (usts, 04).
Thus, for player i, J,, is dominated by o; for almost all types t;.

Suppose h is a perfect equilibrium. Then there exists a sequence of completely mixed
strategy profiles {h™},,cz, such that, for every player i and for almost all ¢;, the following
properties hold:

(ii). liﬁm p(hi*(ti,-), BR;(t;, h™;)) = 0.
From 11_131 p(h™(ti, ), BRi(ti, h™;)) = 0, we deduce that for almost all ¢;, there exists

a sequence of corresponding best response {o]"}necz, (07" € BR;(t;, h™;)) such that

lim p(h"(t;,-),o") = 0. Since A", is a completely mixed strategy profile, we know that
m—0o0

o™ is undominated, and hence ¢/"(a;) = 0. By conditions (i) and (ii), we conclude that
77}i_l;noo p(hi(ti,-), o) = 0. Because A; is finite, it follows that h;(t;,a;) = 0 for almost all
t;. Therefore, h; assigns zero probability to a weakly dominated action a;, and hence h is
admissible. n

When there are infinitely many actions, a perfect equilibrium may fail to be admissible,
even in games with complete information. For an example involving interval action
spaces and continuous payoffs that yields an inadmissible Nash equilibrium, see Simon
and Stinchcombe (1995). In the following example, we demonstrate the existence of a
unique inadmissible perfect equilibrium.

Example 4. There are two players. The action sets are Ay = Ay = {3132, U{0}. The
payoff functions u1 and uy are symmetric; that is, u1(a,b) = uz(b,a) for all a,b € {132, U
{0}. The payoff u; is given in the table below, where player 1 is the row player and player 2
1s the column player.
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AR 0
1 /0|0 0] O 0
LJj1j-tlo o 0
3 103 %0 0
T1010 1 |5 0
0 /0[0|O0O]O0|---]0

Table 3: Payoff function u

Claim 4. The strategy profile (0,0) is an inadmissible perfect equilibrium.

Proof. Notice that the action 0 is weakly dominated by a mixed action o = (0, %, %, %, -, 0),
and (0,0) is the unique Nash equilibrium. We need to show that the strategy profile (0,0)
is perfect.

Since this is a symmetric game, we only need to consider player 1. For each m € N, let

. 1 1 1 1 &1
o™= (1~ o+ “‘E)‘S%JFEZT‘S

m

Clearly, {o™}2°_, is a sequence of completely mixed strategies converging to dp. That is,

li_Iga p(c™,dp) = 0. Given that player 2 plays o™, player 1’s best response is the action
m oo

—L_ when m is sufficiently large. Thus,

m+1
lim p(c™,BRi(¢™)) = lim p(c™,6_1 ) =0.
m—r00 m—00 m+1
It implies that the strategy profile (0,0) is perfect. O

8.2 Proof of Proposition 1 and Proposition 3

The analysis of the Bertrand pricing game is analogous to that of the first-price auction.
Therefore, we proceed by considering the first-price auction in detail and omit a separate
treatment of the Bertrand pricing game here.

We divide the proof into the following steps. In step 1, fix m € N, we construct a
sequence of Bayesian games {Gml“‘}z‘”:1 that converges to the limit Bayesian game G™.
Here, the game G™ differs from the original game G only in its payoff functions. And
cach game G™F possesses a monotone equilibrium ¢™*. In step 2, we demonstrate that
there exists a subsequence of {gmk}ﬁ:1 converges to an increasing strategy ¢”*. In step 3,
we show that ¢™ is a monotone equilibrium in game G™. Moreover, by applying Helly’s
selection theorem, we establish the existence of a subsequence of {¢"}>°_; which converges
to a monotone strategy g. In step 4, we show that g is a perfect monotone equilibrium in
game G.

Step 1. Fix m € Zy. Let V"(b;,vi; a—i(+)) = Vi(bl",vi;a™;(-)) be bidder i’s interim
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payoff function in game G™, where b = (1 — —)6{1, }+ 3 5=Ulb;, bi] + 5{Q}, and af" =
(1— 5 )aj+ 5= Ulb;, by +ﬁ5{Q}, foreach j =1,2,--- ,n. For each k € Z+, we construct a
finite set A¥ C [b;,b;] U {Q} such that U | A¥ is a dense subset of [b;, b;] U{Q}, AF C AFH!
and (U AF) ﬂ(UiOZIA?) = {Q} for any i # j. Let V" be bidder i’s interim payoff function
and A% be bidder i’s action set in game G™F. Let $_;(-) be a monotone strategy profile,
and Bm =(1- —)&m y+ 3= Ulb;, bi] + 51- 010y be a completely mixed strategy profile. Then,
by simple algebra, we obtaln

m 1 :
Vit (b, vis B-i()) = (1 = —) > Vilbi, vis v ())B(y=i) + B (vi, B-i),
Y—_i€ H.{ﬁjﬁU[bj ’Bj]’J{Q}}
J#i
(1)

where P(v;) = 1— L if y; = 3, and P(v;) = 5 if 75 € {U[b;,bj], 0101} Additionally, we

m

define P(y—;) = [];; P(7;), and set

RV

RT(’UZ',/B_Z‘) = ‘/;(l;’bvvlaﬁﬁlz) dl;’m
where /B;n = (1 - ﬁ)ﬁ] + ﬁU[b“Bz] + ﬁ&{@} for all j 75 7.
Given a strategy profile v_; € H#Z{ﬁ], Ulb;, byl d¢q1}, we divide the players into three

subsets. Let Iy = {j: v; = Ulb;,b;]}, which consists of bidders employing a uniform
distribution strategy over their actlon sets. Define Iy = {j: 7; = d4g)}, which includes
bidders with a degenerate strategy, placing all probability mass on Q. Let Is = I\ ([ Ul U
{i}), which contains the remaining bidders. Then, by simple algebra, we obtain

Vi(bs, vis v—i(+)) =/ i (biy vis y—i(v—i)) f(v—i|vs) dv—

0,171
1

/ / s i Qi) 8, b (o-ifs) o

[0,1]n—1 1‘[ [b;,b5] ]61 jeh
bl?Ul?b1—17Q12?BI3)f(/U7i’,U’L') dU* & db
1‘[ [b;.85] /[0,1) j€h
— H z 7 / B V(bz,vz,dbl ,5@1 ,ﬁ[3) ‘® dbj,
jen %3 = 25/ 11 [b;:05] Jeh

where by, = (bj)jer,, Qr, = (Q)jers: Bis = (Bj)jers, 0, = (Opp,y)jer, and 0, = (31qy)jer-
For each bidder i € I, let p¥: [] je 710, b;] — R represent the probability that bidder i wins
given a profile of bids. Additionally, we define p}’(Q,b—;) = 0 for all b_;, meaning that if
bidder i quits the auction, her probability of winning is zero regardless of the bids from
other players. For any monotone strategy profile v, for any b; € [b;, b;], we have

Vi(bi, vi3h—) = / wi (b, vi, V_i(v_y)) f(v_i|vs) dv_;

[O’l]n—l

- / (01 — bi)pl (b, ¥ i(v_2)) f(v_ifvi) dv_g
[0,1]n—1

23



— =0 [ () o) o
[0,1]"~
Define the aggregate winning probability for bidder i against a strategy profile ¥_; as
R AR HURTAE T

Therefore, the interim payoff for bidder ¢ given a bid b; and valuation v; against the strategy
profile ¥_; is

Vi(bi, vis ¥—i) = (vi — bi)pg (bis Y—i).
Similarly, define the aggregate winning probability for bidder ¢ against a strategy profile
Y—i as

pi (bz)ry—l) - Hjell EJ _ b] /1_[ _ pz (bh 61)[1)5Q127/813)j§1 db]

Jje€lq [§J7bj]

Therefore, the interim payoff for bidder ¢ given a bid b; and valuation v; against the strategy
profile vy_; is
Vi(bi, vis v-i(+)) = (vi = bi)p;" (bi, 7-i)-

Let Y (b;, ™) = Z%ienj#i{ﬁj,U[bj,gj],ﬁ{Q}} P(y—;)p¥ (bi,y—i). Then, for any b; € [b;, b;], we
have

V" (b, vi, i) = (1 — %)(Ui — bi)py’ (bi, B7;) + Ry (vi, B—i)-

Next, we are going to show for each bidder i € I, V;™(b;, v;; f—i(-)) satisfies IDC(b;, v;)
for any monotone strategy S_; € F_;. For any b1 bF > Q € AF and b7 > bt

V(b v Bi(4) — Vi (bE s B-i()
= (1= L) — BB B7() — (0 — DFYBEOF 87 ()]

m

= (- %)[bfﬁ?’(bﬁ () = 0B (b, B () + vy (0], BT() — BY (07, BT5()))]-

Since p¥ (b;,b—;) is increasing in b; for any b_;, we have p¥* (b1, B™(-)) — p¥(bE, B™(+)) > 0.
Thus, V;™(bH v 8-i(-)) — Vi™(bEF,vi; B—i(-)) is increasing in v;. Note that if bf = Q,
V(b 05 Bi()) — V(@ 013 B4()) = (1— ) (05 — b (b, 7)), which is obviously
increasing in v;. This shows that V;™(b;,v;; B—i(+)) satisfies IDC(b;,v;) for any f_; €
F_;. By applying Theorem 1, we conclude that each game G™* possesses a monotone
equilibrium, denoted by ¢™*.

Step 2. By Helly’s selection theorem, there exists a subsequence {g""*}72, of {gmk ey

such that {g™™ }2° | converges pointwise to a measurable monotone strategy ¢ for almost

all v € [0,1]". Thus, we have klim p(g;"" (vs,-), g (vi,-)) = 0, for each bidder i, for A;
—00

almost all v;.

Before we show that ¢”" is an equilibrium of G™, we first show that no bidder will bid
above her valuation in the strategy ¢™. Consider a general scenario where k € Z,, i € I,
and v; € [0, 1]. Since g™* is an equilibrium of game G™*, we have V™ (g!"* (v;), vi; g™ (+)) >
Vi (Q,vi; g™F(+)). If bidder i has a positive winning probability at her valuation v; with

bidding g;"(v;), that is, P({v_;| max;,; g;-"k(vj) < g™ (v;)}vi) > 0, then g"*(v;) < v;. In
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other words, she won’t bid above her valuation if she has a positive winning probability.
Otherwise, bidder i will receive a payoff worse than quitting the game at her valuation v;,
which leads to a contradiction.

Claim 5. For any k € N and i € I, we have g7 (v;) < v;.

Proof. We proceed with this proof by contradiction. Suppose v; > 0 and g{”k(vi) > v;.
Since g™* is a monotone strategy profile, the set {v_;| max;; g]mk(vj) < gMF(y;)} is a
product of intervals. As ¢ is a monotone equilibrium in game G™, we know that
P({v_;| max;; gjmk(vj) < g™ (v;)}|v;) = 0. In other words, there exists a nonempty subset
I; C I such that for each bidder j € I, g}"k(vj) > gk (v;) for all v; € (0,1]. Meanwhile,
for each bidder j € I\, there exists a nonnegligible subset of [0, 1] such that ggnk(vj) <
gf"k(vz) For each j € I, since each game G™F has finite action sets, there exists the
minimum mass action of g] mE - denoted by amk. Let j* € argmax ¢, ;”k Then bidder
j*’s payoff from blddlng 95" (U]) will be worse than quitting the auction if her valuation

v; € (0, mm{a ¥, v5}), where vy is the maximum valuation such that g;ﬁk(v;‘) = a}”k
Thus, we arrive at a contradiction to the equilibrium property. Consequently, we have

g;”’“(v@-)gvi, for any k€ Nand i € I. 0

By Claim 5 and the fact that {g""*}?°, converges pointwise to ¢, we conclude that
g™ (v;) < w; for almost all v; € [0, 1], for all ¢ € I.

Step 3. Throughout the remainder of the proof, it will be convenient to adopt a convention
regarding the bidb; = Q. Specifically, notice that @ is an isolated point. Thus, b, — Q7
(which means b, > @ and b, — Q) will represent b, = Q.

Let W; = {v_i|b; > max;; g"(vj)} be the set of types (a subset of [0, 1]"~1) for which
bidder i’s bid b; is the maximum bid against ¢™(-), where ¢ () is a monotone strategy
profile. Define E(-|v;, W;) = 0 if P(W;|v;) = 0. Notice that when considering the maximum
payoff of bidder ¢ at her valuation v;, her maximum profit will be greater than or equal to
the payoff she can achieve by choosing b; = v; (or b; = Q)). Moreover, if bidder ¢ chooses
b; > v; at her valuation v;, her payoff will be at most equal to the payoff she can receive at
b; = v; (or b; = Q). Thus, for a fixed v;, in order to find bidder i’'s maximum payoff at her
valuation v;, we only need to consider b; < v;.

For b; < v;, we have

Vi(bi; vi; 975(+)) = P(Wilvi) E[(vi — bi)pi” (bi, 97 (v—3)) |vi, Wi
< P(Wilvi)E[(vi — b3)[vi, Wi E[p* (bi, g™ (v—s)) [vi, Wi
< P(Wi|vi)E[(vi — bi)lei, Wi
= bh_>m Vi(bi,vis g ( ), (2)

7

where the first inequality follows by Milgrom and Weber (1982, Theorem 23), since
1 — p¥(b;, 9™ (v—;)) is increasing in v_;. The second inequality follows because 0 <
P (bi, 9™ (v—;)) < 1 and P(W;|e;)E[(v; — bi)|vs, Wi] > 0. The last equation holds since
(i) p¥(b,, g™ (v_;)) = 1 for all b, > b; and v_; € W;, and (i) for all v_;, ¢ W,
P (b, g™ (v—;)) — 0 for b, > b; and b, — b;.

Notably, Inequality (2) also holds for any other monotone strategy profile. Since V; is
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bounded, by Lebesgue dominated convergence theorem, we have

Vi(bi, vis y-i(-)) < Tim Vi(bi, vi7-4(1)). (3)
By combining Equation (1) and Inequality (3), and observing that R]*(v;,g™;) is

independent of b;, we conclude that the inequality holds for all b; < v;.
Vi (bi 0 gTi() < lim V(B i g75(4)). (4)

b ab
For each player j, since her strategy ggn(vj) contains at most countably many mass
points and A;? becomes dense in A;, it follows that for any b; € [b;,b;] U {Q}, any € > 0,
and for almost all v;, there exists K € Z,, and b; € AiK such that
lim Vm<b’ i} g ( )) < Vlm(gz,vz,gﬁ()) +e€
b, —b}

< V(b vi 9™ () + 26 for k> K

< V™" (vi), 5397 (1)) + 2¢ for k> K, (5)

where the first and second lines hold because b; can be selected such that the probability
that any g¢;"(") equals b; is arbitrarily small. The third line follows since b; € AKX is a
feasible action for player ¢ in G™" for every k > K, and ¢"™" is an equilibrium in game
Gmnk'

The winning probability for bidder i, denoted p}”(b;,b_;), is increasing in b; and
decreasing in b_;. Therefore, we conclude that p(g;""* (v;), ¢""* (v_;)) forms a sequence of
functions that is monotone in each of its arguments, being increasing in b; and decreasing
in b_;. Note that

Vilgi™"™* (0i), 033 g73*) = Ef(vi — g™ (vi))pi” (g7 (v3), 975" (v-i)) [vi].

Hence, by Helly’s selection theorem (extracting a subsequence if necessary), there exists a
function n;: [0,1]™ — [0, 1] for almost all v € [0, 1]™ such that

E[(vi — g;""™* (vi))pif (""" (vi), 925 (v—3)) [vi]

converges to
El(vi — gi" (vi))mi(v)vi],
by the dominated convergence theorem. Recall that A}* N A%* = {Q} for all i # j. Thus,

mng mng

(g, F(vi), g *(v—s)) € {0,1} for all ny, € Z4 and v € [0,1]". One can interpret 7;(-) as
a tie-breaking rule in the limit, where 7;(v) € {0,1} and >27_; n;(v) < 1.

Given a strategy profile v+ € Hjel{gmnk Ulb;, bl 4@} ), define the probability of each
strategy as follows:

.
P(yj) =1— — it 2" = gj",

and

n 1 . n 7 n
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Similarly, define P(y"%) = [[,; P(7;*). Then, by simple algebra, we obtain

Vg () = (1 L) > Vilbr, 0575V + B (o, 7).
kGH{gmnk Ulb;,bs].010}}

(6)

Given a strategy profile 7% € [, {g]"™, Ulb;, bj], 61y}, we divide the players into
three subsets. Let I}* = {j: 7[* = U [@j,Bj]}, which consists of bidders employing a
uniform distribution strategy over their action sets. Define I;* = {j: ’y;”“ = 0yQ}}, which
includes bidders with a degenerate strategy, placing all probability mass on Q. Let I3* =
I\N(I7* U IJ* U {i}), which contains the remaining bidders. Then, by simple algebra, we
obtain

V(bzavm')/nk( )) :/[01]" ) (b27'Uza')’nk(v—i))f(v—iwi) dv_;

1
Ui—bz‘ ;Ubi,bn, g, T’an’l)n
/[011" 1/H B] o b-—bj( i i brows Qe 9 ()

jerm jeik
® dbj f(v—i[vi) dv—;
]Glnk
1
(v; — by) / / Py (bi, bpre, Qs gn* (vpne )
0 1 JGI b b ‘GIIL]C b] —b] 1 2 13’“ 3
®@ db; f(v_|v;) dv_;
jen'®

= (vi — bi)/ b7 (0, v (v=i)) f (v—ilvi) dv—,
[071}1@—1

mnig

where bllnk = (bj)jgjlww Q[;k = (Q)JQI"IH g;}lkk = (g] )jg[é”ﬂ? 5b1?k = (6{bj})j€[?ka 6Q[;k =
(0(@}) jerm» and

1
ﬁ;u(bm’ynl;(v_i)):/ B H _ p%v(bivb["k,QI"k,gWka('UI"k)) ®n db
jeIIIL 3bal je e bi =Y ' 2 LT e
1

Let v; = g] if yi* = gj"™* for all k € Zy, and v; = 4} if 4% = = Ulb;, b;] for all
k € Zy or 7% = gy for all k € Z4. Similarly, we can find a functlon n: [0,1]™ — [0,1]
such that for almost all v € [0,1]", E[(v; — b;)py’ (pi;7™)|vi] (extracting a subsequence if
necessary) converges pointwise to E[(vl bi)n; ( )|vi] by the dominated convergence theorem.

Besides, given vz-, we have RI"(v;, g"''*) = 5 f[b BT b —LV; (b, v, g™ ) db;, where gmnk =

(1-— —)gj "4 s U[ 5, T ﬁé{Q}, for each j # 4. Since ¢ has at most countably many

mass points and g™ iy

converges pointwise to g™, by Lebesgue dominated convergence
theorem, we know it converges to R;"(v;, ¢™;). Since the set [],.;,{g]",U[b;,b bjl, 0oy} is

finite, and because € > 0 is arbitrarily small, we can find a convergent subsequence such
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that

sup V"' (bi, v 975(4))
bi€[b;.b;]U{Q}

< hgnlnf Vm( Itk (U'L) U’ngmznk( ))

< lim V™ (g™ (vi), 033 9757 (1))

=(1—i) > P(y—i)E[(vi — gi" (vi))n] (v)|vi] + B (vi, g75),  (7)

m _
Y_i € H_{g;nyU[ijbj]vd{Q}}
J#i

where 7] is the limit corresponding to the sequence {p¥(g;""(v;),7"™)}72,.The first
inequality follows by Inequalities (2) and (5), and the first equation follows by Equation (6)
with &k tends to infinity.

Consider any v; such that ¢/ (v;) > Q. Define the set W; = {v_; | ¢™(v;) >
MaxX;4; g;-”(vj)} as the set of type profiles v_; for which bidder i’s bid ¢}"(v;) is among
the highest bids relative to the bids of the other bidders, as spec1ﬁed by the strategy profile
g™ (-). We define E(- | v;, W;) = 0 if P(W; | v;) = 0. When P(W; | v;) > 0, we compute the
expectation conditional on this event. Then we have

]
DE[(vi — g7 (02))mi (0) vz, W)
DE[vi — g7 (i) [vi, WilE[n: (v) | vi, Wi]
DE[v; — g7 (vi)|vi, Wi]
= lm V;(g{"(vi) + €,v35975(-)). (8)

The first inequality is due to the fact that v; — ¢/ (v;) > 0. The second inequality follows by
Milgrom and Weber (1982, Theorem 23). The third inequality holds because 0 < E[n;(v) |
vi, W;] < 1 and P(W; | vi) E[v; — g™ (v;) | vi, Wi] > 0. The final equality results from two
observations: (i) for all € > 0 and v_; € W;, we have p¥ (g7 (v;) + €, g™ (v_;)) = 1; and (ii)
for all v_; ¢ W;, as € = 0, P (9" (vi) +€,9™ (v_;)) — 0.

Given a strategy profile v_; € H#i{g;ﬁ,é{Q},ULj, i1} Let It = {j: v; = Ulby, bj]},
which consists of bidders employing a uniform distribution strategy over their action sets.
Define In = {j: v; = 6{Q}}, which includes bidders with a degenerate strategy, placing
all probability mass on Q. Let Is = I\(I; U I U {i}), which contains the remaining
bidders. For all ng, we define 7]" = mn’“ if v = gj", and 'yj = 7, otherwise. Let

= {v—ilg]" (vi) > maxjer, 97" (vj)} be the set of types such that bidder 7 might win the

auction. We define E(-|v;, W) = 0 if P(W;'|v;) = 0. Then, for P(W;|v;) > 0, we have

0 <E[(vi — gi" (vi))n] (v)[vi]
:P(W ) E[(vi — g;" (vi))n;] (v )|W7W'ﬂ/]
< P(W;|00)Efvi — g}" (vi)|vi, WTE[] (v)[vs, W]
< P(W”UZ)E[U@ 9i (Uz)wwW’y]C’y(Uz)
= lim Vi(g;"(vi) + €059 (); (9)
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m (vi

where (7(v;) = [[;¢;, max{0, min{1, gii)b_.é"}}, and the second inequality follows by

5,0,
Milgrom and Weber (1982, Thoerem 23). Hence, by Lebesgue dominated convergence
theorem, we can obtain that

Jim Vi (9" (vi), vi 975 (4)

—00

< lim V;"(g;" (vi) + €, vi;9™5(+))
e—0t

< sup Vi (bi,vi; g75(4)), (10)
bZE[Q.“Ez]U{Q}

where the first inequality follows by Inequalities (7), (8) and (9).

Lastly, we show that the probability of the set of types in which at least two players
submit the highest bid above @ is zero. Combining Inequalities (7) and (10), we conclude
that all inequalities in Inequalities (7) — (10) must hold as equations. In particular, if
P(W; | v;) > 0, then we have

~ ~

0 < Efv; — gf"(vi) vi, WiE[i(v)|vi, Wi] = Elvi — gi" (vi)[vs, Wil. (11)
We know that v; — ¢/ (v;) > 0 by Claim 5. Next, we are going to show that v; —g/"(v;) > 0.
Claim 6. For almost all v; such that P(W; | v;) > 0, we have v; — g/ (v;) > 0.

Proof. This statement is clearly true if ¢/"(v;) < 0. We now consider the case where
g™ (v;) > 0. By the definition of a monotone strategy, we know that bidder i satisfies
g (@) < gi™(vi) for all ©; € [0,v;]. Since P(W; | v;) > 0, there exists ©; > 0 such that
97" (95) < gi"(v;) for all ¥; € [0,0;] and for each bidder j # i.

Suppose there exists j' # i such that g7 (9;) = g;"(v;) > 0 for almost all ¥; € [0, 0;].
Since g]’.’?(vj/) < wj for almost all vy € [0,1], it is impossible for bidder j' to satisfy
97 (0y) = gi"(v;) > 0 for 9y € [0, min{d;,g;"(v;)}]. Thus, for each j # i, we have
97" (9;) < g{"(vi) on a nonnegligible subset of [0,%;]. Therefore, for each bidder j # i,
there exists b7 < g;"(v;) and 0 < ©; < 9; such that gj"(9;) < b} for all ¥; € [0,0;]. Let
b= max;; by < gi"(v;). Next, we classify g;"(v;) into the following two cases.

Case 1: Let ¢/"(v;) be a mass point of bidder ¢ with the strategy profile g/". It means
that there exists € > 0 such that (1) ¢/"(v;) = ¢;"(v;) for all ¥; € [v; — €*,v;]; or (2)
g (0;) < g™ (v;) for all ¥; < v; and g/ (0;) = g™ (v;) for all ¥; € [v;,v; + €] . Since for each
U; € [v; — €",v; + €*], we have 0; > gI"(7;). Thus, if ¢/*(0;) = g/"(v;) for all v; € [v; — €*, v;],
then we have v; > v; —€* > ¢/"(v; — €*) = g/"(v;). In other words, suppose ¢/ (v;) is a mass
point of g;"(-), except that v; = argming, c(o 11{0ilg{" (0:) = g{" (vi) } (that is, gi"(v;) < gi" (v;)
for all ; < v;), we should have v; > ¢™(v;). Note that ¢/" has at most countably many
mass points, and hence there exist at most countably many valuations v; such that g;"(v;)
is a mass point and v; = argming, ¢jo 11{%:[g;" (9:) = g;"(vi)}. Since ); is atomless, we know
that any countable set has measure zero.

Case 2: Suppose g¢/"(v;) is not a mass point of bidder 4, which implies that ¢™(-)
is continuous at v;. By the continuity property, there exists v, < v; such that ¢/"(v}) €
[b, g7 (v;)) and g7 (v}) is not a mass point of g™ (-). This is achievable due to the continuity
property and the fact that ¢ has at most countably many mass points.

Let W/ = {v_;| max, 97 (vj) < gi"*(v;)}. Then, we have P(W!|v}) > 0. We can find a
sequence of bids {b;"}72; such that b;" is the greatest bid in the set A" with b)" < gI"(v}).
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Since U® , A is dense in [b;, b;] U {Q}, we deduce that b} — g/ (v

%). Since g/*(v}) is not a
mass point of ¢ (+), we have

Vi v g ()
= E{(vs — bpy (" g o, (ol max g™ () < Y B({oi| mae g™ (1) < 67} o)

= E[v; — b vy, {v—i] max ;" (v;) < 0" HP({v— max 97" (vs) < b Hvi)
— Elv; — g7 (vi) v, {v_i] lglgfg?(vj) < g (v) HP({v—] r?gfg?(vj) < gi" (v;) }|vi)

where the second equation holds since A7' N A" = {Q} for i # j. Note that b;"" converges

/

to g™ (v}) (resp. ¢"%(-)), and g""(-) converges pointwise to ¢"%(-) for almost all v_;. For
simplicity, we consider ¢""(-) converges pointwise to ¢™;(-) for all v_;. Then we have

{o—i|max g7"(vj) < g;"(vi)} € lim inf{v_i max g™ (v5) < b},

lim sup{v_;| max g7 (v;) < '} € {v_i| maxg;"(v;) < gi"(vi)}.
=00 J#i J#i

/

7) is not a mass point of g™, we have

Since ¢} (v
P({v-il maxgj’(v;) < g;" (v i) Hvi)
= P({o-s| max gj"(vy) < g:" (vi) Hui)
~ i . M) < B s
= lim P({v] max g; (vj) < b5 Hvi).

Recall that {n;}°, is a subsequence of {n;}°,. Since ¢g"™™ is a monotone equilibrium
of G"™  we have

V(g™ (i), 975 ()
= Ef(vi — g™ (w)pi" (g™ () vi, {o-if max g7 (v) < g™ (vi)}]
(

P({od max g™ (v7) < g7 (v0) o)
Bl 25 o, o mancg}"™ (v7) < b" P({od max g™ (v7) < b} o)
= Vib", 7" ().

The set of v; such that g]"(v;) is a mass point of g™ but not a mass point of g;" consists
of at most countably many points. Consequently, the measure of this set is zero, allowing
us to disregard it. Let [ tends to oo, we consider v; such that ¢"(v;) is not a mass point
of g™, then we have E[v; — g™ (vi)|vi, Wil P(W;|v;) > E[v; — g™ (v})|vi, {v_] max g (v)) <

" (W)Y P({o—i| masx g (1) < g7 (v)}oi). Simee vf = g7"(17) = 0, we have v; — g7"(v]) > 0.

And hence, v; — g™ (v;) > 0.
O

In summary, we observe that the inequality in Inequality (11) holds strictly. Therefore,
we have E[n;(v)|v;, W;] = 1 for almost all v; such that P(W;|v;) > 0. Consequently, given a
nonempty subset B C {1,2,...,n} and letting Tp = {v: g;"(v;) = max; gj"(v;) > Q,Vi €
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B}, if P(Tg) > 0, then for every i € B, we have n;(v) = 1 for almost all v € Ts. However,
since >y mi(v) < 1 for almost all v € [0,1]", it implies that #|B| = 1. Therefore, the
probability that under g™, two or more bidders simultaneously submit the highest bid above
@ is zero. Thus, for every i and almost all v;, V™ (-, v;; ) is continuous at (g (v;), g™ (v—;)).
Consequently, lim;_,o V™ (g;"" (vi),vi; 6" (1)) = V™ (gl (vs), vi; 9™(+)) for almost all v.
This implies that V(g (vl) vi; 9™ (1) = SUDy, e b, 5] U{Q} V™ (b, vi5 g™, (+)) for almost all
v;. Therefore, g™ is a monotone equilibrium.

Step 4. By Helly’s selection theorem, there exists a subsequence {g™*}7°, of {g™}>°_;
that converges to g for almost all v. Since ¢"(v;) < v; for all v; € [0,1], all i € I, and all
m € N, it follows that g;(v;) < v; for almost all v; € [0,1] and for all ¢ € I. In this step, we
will demonstrate that g is a perfect monotone equilibrium.

By the limit property, we have limy,_o p(g;"* (vi), gi(vi)) = 0 for all i and for almost
all v;. Let gi* = (1 — m—k) Tk 4 27711 Ulb;, bj] + ﬁé{Q}, for all j. Since ¢g"* is an
equilibrium in G™, we know that Vm’“(b,,vi;gz-’“()) < V(g% (v3), v g™F () for all
bi € [b;,bi] U{Q}, which equivalents to Vi(b;,v;;g"F (1) < Vi(g: ™ (vi),vi;g7F(+)) for all
bi € [b;,b;] U{Q} and all i. Thus, g."*(v;) € BR;(v;, g™ (v;)) for almost all v;. And hence,
the completely mixed strategy ¢™* in G satisfies limy,, o0 p(g; *(vi), BRi(vi, g7 F (v;))) <
limy 00 p(G; *(ti), 9; " (t;)) = 0. To show g is a perfect monotone equilibrium, it remains
to show that ¢ is an equilibrium. Thus, we only need to show that the probability of two
or more players simultaneously submitting the highest bid above () under g is 0. This can
be derived using similar arguments as in Step 3. We outline the main idea below.

Notice that we can obtain the following inequality (modified from Inequality (5)):

lim V;(b}, vi; 9-i(+)) < Vi(giavi;g—i(')) +e€
b’—>b
< Vi(bi,vis 9" () +2¢ for k> K
< Vi(g™ (vi),vi; g7k (+)) + 3¢ for k > K,

where the first and second inequalities of the following align holds for some b; that
sufficiently close to b;, and b; is not a mass of g and ¢™ for all m. The last
inequality holds because g"* is an equilibrium of G™*, meaning that V,""* (b;, v;; gk ()
V" (g (v3), 0597 (). When k is sufficiently large, we obtain V;(b;,vi; 9™ ()
Vi(g;"™* (vi), vi; g"F (+)) + €. Thus, combining the above two inequalities, we have

<
<

sup  Vi(bs,vi; 9()) < liminf Vi(g;"* (v;), vi; g5 (+)).
b, €[b;,b:]U{Q} k—00

Notice that Vi(g;"* (vi), vi; g7 (-)) = E[(vi—g;"™* (va))pi* (9™*) | vi] P({v—i | max;s; g;"* (v) <
g;" (v;)} | v;). By the monotonicity property and Helly’s selection theorem, we obtain a
subsequence {m;}7°, of {my}7°, such that

E[(vi = g7 (vi))pi(9™) | vi] — E(vi — gi(vi))n; | vi]

by the dominated convergence theorem, where 7 : [0, 1]" — [0, 1].
By the same arguments as the proof of Inequality (8), we can show that

lim Vi(g;" (vi),vi;977) < sup  Vi(bi,vi; 9(-))-
Imroe bi€lb; bilU{Q}
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Last but not least, we repeat the proof of Claim 6. Consequently, we conclude that the
probability of two or more players simultaneously submitting the highest bid above @
under g is zero. Then, we have limy_,o Vi(g;" (vs),vi; 91 ) = Vi(gi(vi), vi; g—;). Combined
with limy_,o0 Vi(g" (v3),vi; 9™) = Supbie[bi,gi]U{Q}W(bi’vi;g('))7 we conclude that ¢ is a
monotone equilibrium, which completes our proof.

8.3 Proof of Proposition 2

The approach used in this proof is analogous to the method employed in the proof of
Theorem 1. For simplicity, we assume that the winning payoff function wj;(a, t) is uniformly
bounded by a constant M for all players i = 1,2,...,n. This implies that |w;(a,t)| <
M, Vie{l,2,...,n},ac A teT.

Step 1. In this step, we construct a sequence of Bayesian games {G™* 122, that converges
to the limit Bayesian game G™. Each game G™* possesses a monotone equilibrium ¢™*
Note that the game G™ and G™ are constructed in the same manner as in Step 1 of
the proof of Theorem 1. We shall demonstrate that bidder ¢’s interim payoff function V;™
satisfies IDC(v;, b;) for any monotone strategy S_; € F_;. By applying Theorem 1, it
follows that each game G™* possesses a monotone equilibrium.

Next, we are going to show for each bidder i € I, V. (b;, t;; f—i(-)) satisfies IDC(b;, t;)
for any monotone strategy S_; € F_;. For any b/ bL > Q € AF and b > bF,

V(0 s B-i(-)) = Vi™ (0F 133 Bi(-))
= (1= D 7)) ~ Vi 8]
-1 3 Py V(b ti:7-4()) = ViOF  tizy—i(),

Y_i € g'{ﬁj7U[bj ’Ej]’é{Q}}
J 1

where P(7_;) = [];4;pi(7;) and P(y;) = (1 - %)5,8]- () + ﬁ‘sU[gj,Ej}(Vj) + ﬁ%m}(%’)
Given a strategy profile v_; € []. 7ﬁl{ﬁj, [0, by], dto1}, we divide the players into three

subsets. Let It = {j:; = Ulb;,b;j]}, which consists of bidders employing a uniform
distribution strategy over their actlon sets. Define Iy = {j: 7; = d4g)}, which includes
bidders with a degenerate strategy, placing all probability mass on Q. Let Is = I\ ([ U Iy U
{i}), which contains the remaining bidders. Then, by simple algebra, we obtain

Vi i y—i() — Vi(bE ti;v—i())
=/[meVw4> wi(BE, by (1)) £ttt

= 1] = [wi (b ti:b1,, Qry Bry) — wi(bE ti b1, Qry, Br,)] ®@ dbjf(tilt;) dt

jenl *J [b b Jjen
Jjel

- ul i 7t17b115Q127513) (z ’tl7b11’Q127/813):| (t—z|tl) dt—l & db

]GI *J b b] —i Jj€h
JG 1

= H 5 —b. / [V(bz ’t“(sbl ’5Q12’513) (bz ’tl’ébll 5@1 , B15)] (X} dbj,

jen J =Jj JE [b b] JISES
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where by, = (bj)jell? Qn = (Q,...,Q) with dim(Qr,) = #[L|, B, = (ﬁj)jélsv 6b11 =
(6gp,3)jen, and dq,, = (0qy)jer,- Let pi’(bi,b—;) represent the winning probability for
bidder ¢ when choosing action b;, while other bidders choose actions b_;, and define
P (Q,b—;) = 0 for all b_; € T_;. By straightforward algebraic manipulation, for any
monotone strategy (), we have

Vi tis0—i(1) — Vi(bF tis ()
=/ wi (b7, by t—a)p (0 p—i(t—i)) — wi(bf, ti, ti)p} (b, h—s(t—i)) f (t—ilts) dt_;

—1

— (b —b})
- / wilb i, ) (0 (B pa(t2)) — O (bF, i (i) f(tilts) dt s

+/ (wi(bf ti,t—s) — wi (b ti, t—s) )Py (b h—i(t—s)) f (t=ilts) dt_;

— (b = b).

Since w,(b Jliyt_i) — z(bf ,ti,t_;) is increasing in ¢; and w;(b;, t;,t_;) is strictly increasing
in t;, it follows that for each bidder i € I, the interim payoff function V;™(b;,t;; 5-4(-))
satisfies IDC(b;, t;) for all B_; € F_;. Furthermore, if b* = Q, then V™(bH t;;v_;(+)) —
m . (. _ 1 _ NV (bH +.- () e 3 ; ;
Vi (@, tisv-i(-) = (1 )ny €1 (8,0 [bj,bj],(s{Q}}P(sz)V;(bi ,ti;7-i(+)) is increasing in

t;. By Theorem 1, there exists a monotone equilibrium in each game G™*, denoted by g™*

Step 2. By Helly’s selection theorem, there exists a subsequence {g™™}2°, of {g™*}2°,

such that {g™™ }2° | converges pointwise to a measurable monotone strategy ¢ for almost

all v € [0,1]". Thus, we have klim p(g""* (viy ), g (vs,+)) = 0, for each bidder i, for \;
—00

almost all v;.

Step 3. In this step, we demonstrate that for each m G N, ¢ is a monotone equilibrium
in G™, and that there exists a subsequence of {¢g™}>°_; which converges to a monotone
strategy g. Throughout the remainder of the proof, we assume that (i) u;(Q,t) = 0 for all
i and t; and (ii) @ is an isolated point, so that b; — @ implies b, = Q.

Let p¥ (b;, b—_;) denote the probability that bidder ¢ wins when the bid vector is (b;, b_;).
Define W; = {t_; | max;z; gj"(t;) < b;} as the set of types (a subset of 7_;) for which
bidder ¢’s bid b; is the highest against the strategy profile g™ (-), where ¢™(-) is a monotone
strategy profile. We define E(- | ¢;, W;) = 0 if P(W; | t;) = 0. Then, we have the following:

Vilbi, ti; 975()) = P(Wilts) Elw; (bi, t)p;” (biy 975 (8 =) [ti, Wil — bs
< P(Wilts)E[wi(bi, t)|t:, Wi]E [pl (bi; g7 (t—3))|ts, Wi] — bi
< P(Wilts)E[wi(bi, t)t:, Wi] —
< b/liHn;JhV(b i g™, (12)

where the first inequality follows from Milgrom and Weber (1982, Theorem 23), since both
wi(bi, ti, t—;) and 1 — pi®(b;, g™ (t—;)) are increasing in t_;. The second inequality holds
because 0 < E[p¥ (b;, g™ (t—i)) | t;, Wi] < 1 and P(W; | t;)E[w;(bs,t) | t;, W;] > 0. The last
equation is valid since (i) p¥ (b}, g™ (t—;)) = 1 for all b, > b; and t_; € W;; and (ii) for all
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t_; ¢ VV'L', p?(b;,gTi(t,i)) — 0 as b; > bZ and b; — bl
Notably, Inequality (12) also holds for any other monotone strategy profile (-).
Specifically, we have

Vilbi, tish—i(-)) < lim Vi(bs, tish—i(-)) (13)

b/~>b

Let P(v-:) = [1;P(7;) and P(;) = (1 = 5)dg7 (%) + 5001, 5,)(05) + 20,0, (7)- We
have

V(b tis g7(-)) = S Py ) Vi, ti:7-i(-)

JFi

—(1— l) Z P(y—i)Vi(bi, ti; v—i(+))

m _
Y—i€ l;l{g;nuU[szbjLé{Q}}
J#i

1 1 7 7
4. P(vy—; / Vi(bi, tisv—i(+)) db;
- Z (v-4) b ( ¥-i(+))

2m i O, 7
=€ [L{o"-Ulb; B3l 9y}
JF

+0 (14)

Given a strategy profile v_; € HJ#{Q;”, [b;,b5], 6701}, we divide the players into three
subsets. Let Iy = {j:; = Ulb;,b;]}, which consists of bidders employing a uniform
distribution strategy over their actlon sets. Define Iy = {j: v; = d;¢o1}, which includes
bidders with a degenerate strategy, placing all probability mass on Q. Let I3 = I'\([; U2 U
{i}), which contains the remaining bidders. Then, by simple algebra, we obtain

Vilbi, tiiy-i() = / i (b i) (i) b

/ / wi(biy ti5 b1, Qry, 9FY) @ dbyf(tlt:) dt
6]1 ‘7 EIl
J 11
Uq bzgtz;bhanzagI3) ( ’L|t)dt i & db
11,50 T seh
_ H - / Vil 1, 0, 01) 8 by
jen = [1 [b;.55]

where bll — (bj)jEIla QI2 = (Qa’Q) with dlm(QIg) = #‘IQL 51)[1 = (5{b]-})j€ha
6Qr, = (6(q})jen, and g7} = (97")jer;- Since V; is bounded, by the Lebesgue dominated
convergence theorem and Inequality (13), we have

V;(bi,tl’; )< lim V(b ti; ) (15)

b, —bf
Combining Equation (14) and Inequality (15), we obtain

Vi (bistiz g7i(-)) < lim V(b ti5 975 (1)) (16)

(A
b, —bf

34



For each bidder j, because his strategy ¢7"(¢;) has at most countably many mass points
and A;? becomes dense in [Qj,gj] U {Q}, thus, for every b; € [b;, b;] U {Q}, every € > 0, and
A; almost all ¢;, there exists K € N, and b; € AZK such that

lim Vm(b, ti;gTz‘) < Vz (bzytu )"' €

b, —bt
S‘/; (blatza mnk)+2€ forkZK,
< VMg (t), 1 ™) 4 26 for k > K, (17)

where the first and second lines follow because b; can be chosen such that the probability
of any gjm(tj) equaling b; is arbitrarily small. The third line follows because b; € AKX is
a feasible action in G™"* for player i for every k > K, and ¢""** is an equilibrium in the
game Gk,

Since Vi(g]™ (t), £ ™) = Blu(g]"™ (1), t_p (g™ (1), 677 (£-)) | t — g™ (8,
and since the probability that bidder ¢ wins, p{(b;, b_;), is increasing in b; and decreasmg
in b_;, each function p}’(¢™"*(t)) in the sequence is monotone in each of its arguments
t1,...,ty: increasing in t; and decreasing in t_;. By Helly’s selection theorem, extracting
a subsequence if necessary, there exists a function n;: [0,1]" — [0,1] such that,
for almost all ¢ € [0,1]", E[w;(g;""" (t:), t—i)p¥ (g;""™* (t:), g™ * (t—i)) | ti] converges to
Elw; (g™ (ti), t—i)n:i(t) | ti], by the dominated convergence theorem. Since the bidders’ finite
action sets are pairwise disjoint, we have p{’(¢""(t)) € {0,1} for all nj and ¢. Therefore,
it follows that ;(t) € {0,1} for almost all ¢. One can interpret n;(-) as a tie-breaking rule
in the limit, with Y ;" ; 7; < 1 for almost all ¢.

Repeating the computation above, let P(y"}) = [[;,P(v;*), where P(yj*) =
(1-1) (5g;nnk (%) + 3=00[0.1] (%) + 2m55{Q}( *). We obtain the following:

Vi (i tis g7 () = > P(y"™8 V(B i3 7™ (+))
Y e TT{g) " .U0,1].6(qy}
J#i
1 " .
== > P(y")Vi(bi, tis 7% ()
Yk e [T {g] ™" U0,1].670y}
JF#i
1 1 Nk T Nk 7
LT s > POM) [ Vit () dby
v Zen{g;"”k U[b b ] 5{@}} [éz‘,bi]
J#i
+0 (18)

Given a strategy profile v € [, {g]"", Ulb;, b, 61y}, we divide the players into
three subsets. Let I/ = {j: v/* = Ulb,, b;]}, which consists of bidders employing a
uniform distribution strategy over their action sets. Define Iy* = {j: v} = d(qy}, which
includes bidders with a degenerate strategy, placing all probability mass on Q. Let I3* =
I\(I{* U IJ* U {i}), which contains the remaining bidders. Then, by simple algebra, we

obtain
Vilbi, ti 7™ () (19)
- / wi(bi b3 7™ (b)) (t—ilti) db
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1
=] = / / bz,tz,b"k,Q["mg?}zzk) ® db; f(t-ilt:) dt—;
Tl [0 jen’*

w bi — b
]Ellk ! - jer] ng
1
= H = / / b’utlat )pz (blab nkaQ[nk7gnZlTkLk) ® db]f(tfl‘tl) dt*l
w, bj — b Is jel'k
]EI k J JGI 1
-
1 mn
= / wl(blatlatfl) H g _ b(/ . (blab "kaQ]nkng k) ) ®"k dbj)f(tfzﬁz) dt*l
i jerw 92 1 [b;. ] jeh
1 jer
where b[fk = (b){]gjnk}a Q]nk = (Q’ 7Q) with dlm(Q[;k) = #’ISkL 5blmnk
1
(5{1)]'})]‘6[?’“7 5@4”"1@ - (5{Q})j€[ ky and g[”kk = (g] k){je[gk}‘

)=

Denote pi’(b;, v"%) = H]GIlk pyy fH'gJ"k [b;.5;] Py (bi, b e Q[”k ) g%‘k (tjnk)) ®]€1nk da;.
b jer!

Since p¥(-) is decreasing in b_;, we know that p¥(b;,7"*) is decreasing in ¢_;, and combine
with Equation (19), we have

Vibssti5 7™ () = / wilbi tiy ) pY (b ™) F(t_ilts) At — b,

—1

Similarly, we have {p¥(g;""*(t;),7"*)}%2, (extracting a subsequence if necessary), and a
function n;: [0,1]™ — [0,1] such that for almost all ¢ € [0,1]",

Efw;(g;""* (t:), t-o)pi” (g7 (t:), 725" (t-0))[ti] — Blwi(gi" (t), t-i)n; (£)][ti]

by the dominated convergence theorem.
_ 1.1 7
Denote R} (t;, g"}") = 2m " b,—b, Zﬂ’feﬂm{ﬁ"’“ﬂ[ ]5{Q}} f[b bi] Vi(bi, tis 7% () dbi.
Define v; = g7 if 7j* = ¢;""* for all k € Z, and let ; = ~}* 1f Vit = = Ulb;, b;] for all
k € Z,y or fy;““ = dyy for all k € Z. Since the mass points of y_; and {7%}ren are at
most countable, it follows that RI™(¢;,¢""") converges to R (t;, g™:), where

1 1 ~ .
o ’y_ienjqéi{g;‘an[biaBi]v(S{Q}} [bi:b:]

Since the set []; ., {g]",Ulb;,b bj], 0;gy} is finite, and € > 0 is arbitrarily small, we have

sup  Vi"(bi, ti; 975(+)
bE[bz,b]U{Q}
< hmmf V(g (), ti; 9750 (1))

= hm Vm( i ()t g7 ()
_>

=) 3 P(y—s) (Eluws (97" (8), t—i)n] (1) ] — g1 (1)) + R (1, g™,

Y—i€ H{g;",U[O,l],(S{Q}}
2

(21)
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where 1] is the limit corresponding to the sequence {p¥(g;""(ti),7"})}°;. The first
inequality follows from Inequalities (16) and (17). The first equation is obtained by
selecting an appropriate subsequence of convergence, and the last equation follows from
Equation (18) as | — oo.

Let W; = {t—ilmax;.; g7*(t;) < g;"(ti)} be the set of types such that bidder i’s bid
g7 (t;) is the highest bid against ¢”(-). Define E(- | t;, W;) = 0 if P(W; | t;) = 0. Then we
have

E[w;(g;" (t:), t—i)ni(t)|ti] — g;" (t:)

= P(Wilta)Ewi(gf" (t:), t—i)m(t) |ts, Wi] — gi" (t:)

< P(Wilt:)Elw; (g7 (), t—i) |ts, WilE[ni (8)[t:, Wi] — g7 (t:)

< P(Wilta) Blwi(g™ (), t—o)ts, Wi] — i (t:)

:gl_if(l)flﬂ/é(gfl(tz‘) +€6,ti3975(+))s (22)

where the first inequality follows from Milgrom and Weber (1982, Theorem 23), and the
second inequality follows from 0 < E[n;(t) | ti,Wi] < 1 and IP’(VAVZ | ti)E[wi (g™ (t:), t—3) |
ti] > 0.

Given a strategy profile y_; € H#i{g;?l,U[Qj,Ej],é{Q}}. Let Iy = {j: v; = Ulby, bj]},
which consists of bidders employing a uniform distribution strategy over their action sets.
Let W) = {t_; | maxjer, g7"(t;) < g"(t:)}. Define E(- | £;, W) = 0 if P(W, | ;) = 0.
Then we have

Efw;(g;" (t:), - 2)77;y Olti] — gi" (t:)

= P(W] [t:)Elwi(g]" (t:), t ) D (Ot W] = gi" ()

< P(W; |t0)Elwi(g7" (), t—i)lti, W TE[n] (8) [t W} — 97" (¢:)

< P(W; |t:)Elwi(g7" (), t—)lts, W1C () — g7 (t:)

= lim Vi(al'(8) + e, 1i7-2) (23)

where (7(t;) = [];¢;, max{0, min{1, g t)=h; +}, the first inequality follows by Milgrom
.7

and Weber (1982, Thoerem 23), and the second inequality follows by E[n] (t)[t;, W)] <

C'(t;) and P(W)|t;)E[w;(gl(t:),t_;)|t:] > 0. Hence, by Lebesgue dominated convergence
theorem, we can obtain that

hm Vi (g™ (i), tis g™0)
g hm Vi (gi" (t:) + €, ti;9™%)
e—0t

< sup V" (bi, tis g™), (24)

bi S [bz ,Ez}U{Q}

where the first inequality follows by Inequalities (21), (22) and (23).

Next, we show that the probability, under ¢", that two or more bidders simultaneously
submit a highest bid above @ is 0. Combining Inequalities (21) and (24), we know that the
inequalities in Inequalities (21) — (24) must be equalities. In particular, if P(W;|t;) > 0
then ) R

0 < Efw; (g (t:), t—)lts, WilELn; (1) [ti, Wi] = Elwi(g]" (t:), t—)|ts, Wi]-
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Since w;(b;,t_;) > 0 for all b; > @, and t_; € [0,1]"~!, and P(W;|t;) > 0, this inequality
strictly holds. Hence, we conclude that E[n;(t)|t;, W;] = 1 for almost all ¢; such that
P(Wilt;) > 0

Consequently, given § # H C {1,2,...,n} and letting Ty = {t : ¢™(t;) =
max; g7'(t;) > Q,Vi € H}, we consider the probability P(Tf). If P(Tx) > 0, then
for every i € H, n;(t) = 1 for almost all t € Ty. However, since > ;" n;(t) < 1 for
almost all t € T, we conclude that |H| = 1. Therefore, the probability that two or more
bidders simultaneously submit the highest bid above @) under ¢™ is 0. Thus, for every
i and almost all ¢;, the function V;™(-,¢;;-) is continuous at (g;"(¢;), g™ (t—;)). Therefore,
we have limy_,o V/™(g;"" (t:), ti;g"5") = V™ (g™ (¢:), ti; g™) for almost all ¢;. This implies
that V;™(gm (z) t.7 g7_”z) = SUDycp, pjufo} Vi (bi, ti; g™;) for almost all ¢;. Hence, g™ is a
monotone equilibrium.

Step 4. By Helly’s selection theorem, there exists a subsequence {g"*}7° | of the sequence
{g™}oo_, that converges to a strategy profile g for almost all types ¢. In this step, we will
show that g is a perfect monotone equilibrium.

By the construction of g, we have:

lim p(g;"(ti),9i(ti)) =0 for all 4, almost all ¢;.
k—o0

Let gi* = (1 — %)g]m + ﬁU[O, 1]+ ﬁé{Q} for all j. Since g™ is an equilibrium in G™,
for almost all ¢;, we have:

Vi (i, tis g75) < Vi (gilti); gy)  for all b; € [by,b;] U{Q},

(2

which is equivalent to:
Vi(bi, ti:9™5) < Vi(gi(ta), ti;g7)  for all b; € [by, bi] U{Q}.

Thus, ¢;*(t;) € BRi(t;, g™;(t;)) for almost all ¢;. Hence, the completely mixed strategy g™
in G satisfies:

Jimp (97 (1), BR(t:, g74(1:))) = lim_ p (37" (t:), 9" (1)) = 0.

To show that g is a perfect monotone equilibrium, we must show that ¢ is an equilibrium.
Note that each ¢™ is an equilibrium in G™, and the game G™ converges to game G, and
g™ converges to g. Thus, it remains to show that the probability of two or more players
simultaneously submitting the highest bid above ) under g is zero. This can be derived
using similar arguments to those in Step 3. We outline the key steps below.

From Inequality (13), we know that:

Vilbi,tizg(+)) < lim Vi(b, ti; ().

b, —b;
We can obtain the following inequality (modified from Inequality (17)):

lim V;(b,ti;9—i) < Vi(bi,ti;9-i) + €
b’—)b

S V(bzatz, ) + 2€ fOI' k? 2 K

< Vi(g™ (t:), ti; 9"F) + 3¢ for k> K,
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where the first and second inequalities hold for some b; sufficiently close to b;, and b; is not
a mass point for g and ¢ for all m. The last inequality holds because g™* is an equilibrium
in G, ie., Vi™(bi, ti; g"F) < V(g™ (t:),ti; g™'F). When k is sufficiently large, we can
obtain that:

Vi(bis tis g"'F) < Vigi™ (ti), tis g"F) + e.

2

Thus, combining the above inequalities, we get

sup  Vi(bi, ti;9(-)) < lim Vi(g;™ (8:), 85 g7F).-
bielb, Bi1U{Q} heo
Notice that V;(g;"*(t;),ti;9"F) = Elwi(g, ™, t—)pl(¢™*)|t;] — g;"*(t;). By the mono-
tonicity of g and Helly’s selection theorem, we can obtain Elw;(g;", t_;)p¥(¢")|t:;] —
Elwi(gs, t—i)nf|ts]  {ni};2, is a proper subsequence of {ny}32,, by the dominated conver-
gence theorem, where 7} : [0, 1]™ — [0, 1].
By the same arguments as the proof of Inequality (22), we can show that

lim Vi(g;" (t:),ti;9™) < sup  Vi(bi,ti; 9(-)).
[=o0 bi€lb; bilU{Q}

Finally, we repeat the proof from Step 3, and we can show that the probability of two or
more players simultaneously submitting the highest bid above ) under g is zero.
Thus, we have

Jim Vi(gi" (ti), ti; 97F) = Vilgi(ti), ti; 9—i)-
Combining this with

lim Vi(g" (t:),ti;974) = sup  Vi(bi,ti;9(-)),
[=o0 bi€lb; BilU{Q}

we conclude that g is a monotone e