
Monotone Perfection

Wei He∗ Yeneng Sun† Hanping Xu‡

November 12, 2024

Abstract

Monotone equilibria may be undesirable in Bayesian games in the sense that players

adopt weakly dominated strategies. To account for the possibility that the players

might choose unintended strategies through a trembling hand, we propose an equilibrium

refinement called “perfect monotone equilibrium.” This notion strengthens the notion of

monotone equilibrium in the sense that it satisfies the important property of admissibility

in Bayesian games with finitely many actions, and the property of limit undominatedness

in Bayesian games with infinitely many actions.

In a general class of Bayesian games where each player’s action set is a sublattice

of multi-dimensional Euclidean space and players’ types are also multi-dimensional, a

perfect monotone equilibrium is shown to exist under the supermodularity and increasing

differences conditions. These conditions model the scenarios in which, informally, players’

payoffs have complementarity in own actions and monotone incremental returns in own

types. We demonstrate that the increasing differences condition is sharp by providing a

two-player game that satisfies the widely adopted single crossing condition in the literature,

but does not possess any perfect monotone equilibrium. To show the usefulness of our

result in the setting with discontinuous payoffs, we provide various illustrative applications,

including first-price auctions, all-pay auctions, and Bertrand competitions. Our result can

be further extended to the setting with more general action spaces and type spaces.
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1 Introduction

As a foundational element of game theory, the model of Bayesian game has provided

a standard analytical tool and found applications across a wide range of fields. Auctions,

for instance, are among the most successful applications of this model. In previous works

on auctions, the focus is often on pure strategy monotone equilibrium, which suggests that

bidders with higher valuations tend to submit higher bids. The existence of pure strategy

monotone equilibrium has been established in Bayesian games with great success. The

seminal work of Athey (2001) first established the existence of a pure strategy monotone

equilibrium based on the single crossing condition. McAdams (2003) generalized this result

to settings with multidimensional and partially ordered type and action spaces. Reny (2011)

discovered contractibility to be automatically satisfied given any nonempty monotone best

responses, and employed a powerful fixed-point theorem to establish the general existence

of pure strategy monotone equilibria.1

While the above approach has proven useful, it can sometimes yield monotone equilibria

that are undesirable. Consider an asymmetric first-price auction with two bidders.

Bidder 1’s private value v1 is uniformly drawn from [0, 5], and bidder 2’s value v2 is

uniformly drawn from [7, 8]. Each bidder i submits a bid bi ∈ {0, 1, 2, · · · , 8} after observing

her value vi. The bidder who submits a higher bid wins the good, with ties broken randomly.

Here, b̂1 ≡ 5 and b̂2 ≡ 6 is a monotone equilibrium. To see it, given that bidder 2 bids

6, bidder 1’s payoff is at most 0, achievable by bidding any number lower than 6. When

bidder 1 bids 5, the best response of bidder 2 is to bid 6 for any v2. Thus, (b̂1, b̂2) is an

equilibrium, which is trivially monotone. However, it is obvious that bidding 5 is weakly

dominated by bidding 0 for bidder 1, as her payoff is at most 0 with a bid of 5 and at least

0 with a bid of 0. When bidder 2 bids 0, bidder 1 is strictly better off by bidding 0. The

equilibrium b̂1 ≡ 5 and b̂2 ≡ 6 is unappealing because it involves weakly dominated actions.

The main purpose of this paper is to study an equilibrium concept called “perfect

monotone equilibrium,” which accounts for the possibility that the players might choose

unintended strategies through a trembling hand, albeit with negligible probability. A

perfect monotone equilibrium strengthens the notion of monotone equilibrium in the

following sense: it satisfies the important property of admissibility in Bayesian games with

finitely many actions, and the property of limit undominatedness in Bayesian games with

infinitely many actions.

In Theorem 1, we prove the existence of a perfect monotone equilibrium in a class of

Bayesian games, where each player’s action set forms a sublattice of a multidimensional

Euclidean space, and their types are multidimensional and atomless. Our equilibrium

existence result relies on two widely adopted assumptions: each player’s interim expected

payoff (1) is supermodular in her own actions; and (2) has increasing differences in her own

actions and types when others adopt monotone strategies. These two assumptions imply

1For more applications and developments of monotone equilibria, see, for example, Reny and Zamir (2004),
McAdams (2006), and Prokopovych and Yannelis (2017, 2019).
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that each player’s interim payoff satisfies complementarity in own actions and monotone

incremental returns in own types.

To establish the existence of a perfect monotone equilibrium in a Bayesian game, we

construct a sequence of perturbed games that differ from the limit game in payoff functions.

Importantly, every action in any perturbed game can be seen as a completely mixed action

in the limit game. To obtain a perfect monotone equilibrium in the limit game, we need

to show that each perturbed game retains certain properties from the limit game so that a

monotone equilibrium exists in the perturbed game. As actions in the perturbed game are

interpreted as completely mixed actions in the limit game, those properties must persist

under expectations. The increasing differences condition is one such cardinal condition,

which is stronger than the single crossing condition (SCC) in Athey (2001), McAdams

(2003) and Reny (2011).2 As remarked by Milgrom and Shannon (1994), the single crossing

condition is not easy to work with, and they provided characterizations for the increasing

differences condition. In particular, it is well known that the single crossing condition

is an ordinal property that might not hold under expectations.3 To demonstrate that

the increasing differences condition is tight, we provide a counterexample of a two-player

Bayesian game in Section 5.1. This example satisfies the single crossing condition, while the

increasing differences condition fails only for one player, and a perfect monotone equilibrium

fails to exist.

In several important applications of Bayesian games, players’ payoffs are often

discontinuous. For example, in first-price auctions for a single object, a bidder experiences

a discrete change in payoffs when her bid shifts from being below opponents’ highest bid

to above it. Similarly, in price competitions, a firm’s market share can jump significantly

if its price slightly undercuts the current market price. Due to the payoff discontinuities,

Theorem 1 does not apply directly to these environments. In Section 4, we offer three

illustrative economic applications with affiliated types and a continuum of actions – first-

price auction, all-pay auction, and Bertrand competition – to demonstrate how our results

can be used to establish the existence of perfect monotone equilibria in Bayesian games

with discontinuous payoffs.

Finally, we provide two extensions. In the first extension, we consider the setting with

one-dimensional action spaces and type spaces as in Athey (2001). When a game has

independent private values, it is shown that a perfect monotone equilibrium exists under

the weaker single crossing condition. In the second extension, we extend our Theorem 1

to general Bayesian games as in Reny (2011), where the action spaces are compact locally

complete metric semilattices and the type spaces are partially ordered probability spaces.

We show that the equilibrium existence result continues to hold in this more general setting.

Our paper is related to the literature that provides equilibrium refinement aiming to

eliminate undesirable equilibria. The classic work of Selten (1975) proposed the notion of

2The condition of supermodularity automatically holds in the single-dimensional setting as in Athey (2001).
3For further discussions, see Quah and Strulovici (2012) among others.
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perfect equilibrium by introducing completely mixed strategies. Simon and Stinchcombe

(1995) studied the possible issues with the notion of perfect equilibrium in strategic form

games with compact action spaces. They discussed two essentially different approaches

and investigated the relations among the various solution concepts. Bajoori, Flesch and

Vermeulen (2013) examined the two approaches proposed in Simon and Stinchcombe

(1995) in further details. Bajoori, Flesch and Vermeulen (2016) considered the notion of

perfect equilibrium and discussed the properties of admissibility and limit undominatedness

in Bayesian games.4 All those papers do not invoke the monotone method, while our

paper focuses on monotone strategies in Bayesian games and studies the notion of perfect

monotone equilibrium.

There is another stream of literature on Bayesian games with strategic complementarity,

which focuses on the existence of pure strategy equilibria and monotone comparative statics

in supermodular games; see, for example, Milgrom and Roberts (1990), Vives (1990) and

Milgrom and Shannon (1994). However, in these works, the strategies themselves need not

be monotone in types.5 In the current paper, we develop monotone methods applying to

Bayesian games that may fail to exhibit complementarity across actions, but satisfy the

monotone incremental returns in own type when others adopt monotone strategies.

This paper is also related to the literature that aims to provide sufficient conditions

for the existence of equilibria in Bayesian games. Radner and Rosenthal (1982) worked

with the conditions of independent atomless types and private values. Milgrom and Weber

(1985) allowed for payoffs with private values and correlations among the players by working

with conditionally independent types. He and Yannelis (2016) and Carbonell-Nicolau and

McLean (2018) studied Bayesian games with discontinuous payoffs. Fu and Yu (2018)

provided sufficient conditions that ensure the existence of Pareto-undominated and socially-

maximal pure strategy equilibria. He and Sun (2019) introduced a general condition called

“coarser inter-player information” and showed that it is necessary and sufficient for the

existence of pure strategy equilibria. All those papers do not consider monotone strategies

or perfect equilibria.

The remainder of the paper is organized as follows. Section 2 introduces the model

of Bayesian games and the notion of perfect monotone equilibrium. Section 3 presents

the key condition and proves the existence of perfect monotone equilibrium. In Section 4,

we provide applications in auctions and price competitions. Section 5 includes further

examples. In Section 6, we discuss one extension in the independent private value setting

and another extension in the setting with general action and type spaces. The proofs are

left in Appendix.

4The notion of perfect equilibrium has also been studied in other general environments; see, for example,
Carbonell-Nicolau (2011) for discontinuous games, Carbonell-Nicolau and McLean (2014) for potential games,
and Rath (1994, 1998) and Sun and Zeng (2020) for large games.

5It was further shown in Van Zandt and Vives (2007) that in the class of monotone supermodular games the
extremal pure strategy equilibria are monotone in types. An algorithm is provided to compute those equilibria.
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2 Bayesian Games

In this section, we examine a class of general Bayesian games, where each player’s

action set forms a sublattice of a multidimensional Euclidean space, and their types are

multidimensional and atomless.

2.1 Model

Before introducing the model, we first introduce the concept of lattices. Let (L,≥) be

a partially ordered set. For any S ⊆ L, let ∨S denote the least upper bound of S in L (if

it exists), satisfying

• ∨S ≥ s for any s ∈ S, and

• for c ∈ L, if c ≥ s for any s ∈ S, then c ≥ ∨S.

Similarly, let ∧S denote the greatest lower bound of S in L (if it exists), satisfying

• ∧S ≤ s, for all s ∈ S,

• for all c ∈ L, if c ≤ s for all s ∈ S, then c ≤ ∧S.

For example, if S = {a, b}, then a ∨ b = ∨S and a ∧ b = ∧S.

Definition 1. 1. A lattice is a partially ordered set (L,≥) such that for all a, b ∈ L,

a ∨ b ∈ L and a ∧ b ∈ L.

2. A subset E of L is a sublattice if E forms a lattice; that is, for any a, b ∈ E, a∨ b ∈ E

and a ∧ b ∈ E.

3. A sublattice E is complete if and only if for all S ⊆ E, ∨S ∈ E and ∧S ∈ E. Every

finite sublattice is complete.

Now we are ready to present the formal model of Bayesian games.

• The set of players is denoted by I = {1, 2, . . . , n}, n ≥ 2.

• For each i ∈ I, the action space of player i is Ai, which is a complete sublattice in

some Euclidean space Rs with respect to the product order.6 Denote A =
∏n

i=1Ai.

• Player i’s type ti is drawn from the type space Ti = [0, 1]l for some l ∈ Z+.
7 Denote

T =
∏n

i=1 Ti. The joint density function f : T → R+ on types is bounded above by

M and bounded below by M > 0. The type space is endowed with the product order

and the usual Euclidean topology. The marginal distribution on player i’s type space

is denoted by λi; that is, for any Borel set Bi ⊆ Ti,

λi(Bi) =

∫
T−i

∫
Bi

f(ti|t−i) dti dt−i.

6For any two elements x, y ∈ Ai, x = (x1, x2, . . . , xs) and y = (y1, y2, . . . , ys), x ≥ y in the product order if
and only if xj ≥ yj for j ∈ {1, 2, . . . , s}, and x > y if and only if x ≥ y and x ̸= y.

7The assumption of a common type space is made purely for simplicity. All results can be extended to the
setting where players have different type spaces of varying dimensionality.
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• Given action profile a ∈ A and type profile t ∈ T , the payoff of player i is ui(a, t),

which is bounded, jointly measurable, and continuous in a.

• For each player i ∈ I, a behavioral strategy (resp. pure strategy) is a measurable

mapping from Ti to M(Ai) (resp. Ai), where M(Ai) is the set of probability measures

on Ai.

• A monotone (or increasing) strategy αi is a pure strategy increasing in player i’s types;

that is, αi(t
H
i ) ≥ αi(t

L
i ) for tHi ≥ tLi . For each i ∈ I, let Fi be the set of monotone

strategies of player i. As usual, F =
∏n

i=1Fi and F−i =
∏

j ̸=i,j∈I Fj .

• Given a strategy profile g = (g1, . . . , gn), the interim payoff of player i depends on her

own action ai, own type ti, and other players’ strategies g−i,

Vi(ai, ti; g−i) =

∫
T−i

∫
A−i

ui(ai, a−i, ti, t−i) ⊗
j∈I,j ̸=i

gj(tj ,daj)f(t−i|ti) dt−i.

Player i’s expected payoff is

Ui(g) =

∫
Ti

∫
Ai

Vi(ai, ti; g−i)gi(ti,dai)λi(dti)

where λi is the marginal on Ti.

Let BRi(ti, g−i) be the collection of best responses to a strategy profile g−i at player i’s

type ti, and BRi(g−i) be the collection of player i’s best responses to a strategy profile g−i.

Definition 2. 1. A Bayesian Nash equilibrium is a strategy profile g∗ = (g∗1, g
∗
2, . . . , g

∗
n)

such that g∗i ∈ BRi(g
∗
−i) for every player i ∈ I. Moreover, if g∗ = (g∗1, g

∗
2, . . . , g

∗
n) is a

pure strategy profile, then g∗ is a pure strategy Bayesian Nash equilibrium.

2. A monotone equilibrium is a pure strategy Bayesian Nash equilibrium g∗ = (g∗1, g
∗
2, . . . , g

∗
n)

with g∗i being an increasing strategy for each player i ∈ I.

2.2 Perfect monotone equilibrium

Throughout this paper, we will focus on monotone equilibria. However, as demonstrated

via the illustrative example in the introduction, monotone equilibria do not rule out the

possibility that players might choose weakly dominated strategies. To address this issue, we

strengthen the notion of monotone equilibrium by requiring that such equilibria be perfect,

which is one of the most commonly used refinement of Nash equilibria.

A strategy profile g = (g1, . . . , gn) is called a completely mixed strategy profile if for

each player i, each ti ∈ Ti, and any nonempty open subset Oi of Ai, gi(ti, Oi) > 0.

Definition 3 (Monotone Perfection). a. A strategy profile g = (g1, g2, · · · , gn) is said

to be perfect, if there exists a sequence of completely mixed strategy profiles {gk =

(gk1 , g
k
2 , · · · , gkn)}∞k=1 such that for every player i and λi-almost all ti, the following

properties hold.
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(1). lim
k→∞

ρ
(
gki (ti, ·),BRi(ti, g

k
−i)

)
= lim

k→∞
inf

σi∈BRi(ti,gk−i)
ρ(gki (ti, ·), σi) = 0.8

(2). lim
k→∞

ρ
(
gki (ti, ·), gi(ti, ·)

)
= 0.

b. A strategy profile g is called a perfect equilibrium if g is both perfect and a Bayesian

Nash equilibrium.

c. A strategy profile g is a perfect monotone equilibrium if it is both perfect and a

monotone equilibrium.

The above notion of perfect equilibrium (i.e., (a) and (b)) is standard in the literature;

see Selten (1975) and Simon and Stinchcombe (1995) for normal-form games and Bajoori,

Flesch and Vermeulen (2016) for Bayesian games. We strengthen this notion in (c) by

requiring the equilibrium be monotone.

3 Main Results

In this section, we provide sufficient conditions to guarantee the existence of perfect

monotone equilibria. In particular, it is shown that when the other players adopt

monotone strategies, if player i’s payoff satisfies the conditions of increasing differences

and supermodularity for each i ∈ I, then a Bayesian game possesses a perfect monotone

equilibrium.

Definition 4 (Supermodularity). Let (X,≥,∨,∧) be a lattice, and Θ an index set. A

function h : X ×Θ → R is supermodular in x (or SPM(x)) if and only if for any x, x′ ∈ X

and θ ∈ Θ,

h(x ∨ x′, θ) + h(x ∧ x′, θ) ≥ h(x, θ) + h(x′, θ).

Definition 5 (Increasing differences). Let (X,≥,∨,∧) be a lattice, (Y,≥) a partially

ordered set, and Θ an index set. A function h : X × Y × Θ → R satisfies increasing

differences condition (IDC) in (x, y) ∈ X × Y if and only if for any x′ > x, y′ > y, and

θ ∈ Θ,

h(x′, y′, θ)− h(x, y′, θ) ≥ h(x′, y, θ)− h(x, y, θ).

Assumption 1. For each i ∈ I and monotone strategies g−i ∈ F−i, player i’s interim

payoff Vi(ai, ti; g−i(·))

1. is supermodular in ai for any ti ∈ Ti, and

2. has increasing differences in (ai, ti).

Remark 1. • If Ai ⊆ R, then Assumption 1 (1) is trivially satisfied.

8Here ρ is the Prohorov metric: for ν, µ ∈ M(Ai),

ρ(ν, µ) = inf{ϵ : ν(B) ≤ µ(Bϵ) + ϵ and µ(B) ≤ ν(Bϵ) + ϵ for any Borel set B ⊂ Ai},

where d is the Euclidean metric, Bϵ = {b ∈ Ai : d(b, B) < ϵ} and d(b, B) = infb′∈B d(b, b
′).
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• Assumption 1 is slightly weaker than assuming that Vi(ai, ti; g−i(·)) is supermodular

in (ai, ti). To see it, note that given g−i, if Vi(ai, ti; g−i(·)) is supermodular in (ai, ti),

then it is clear that Vi has increasing differences in (ai, ti); but the converse is not

true.

The following theorem presents the existence result of perfect monotone equilibrium.

Theorem 1. A perfect monotone equilibrium exists under Assumption 1.

Remark 2. The notion of perfect monotone equilibrium refines the notion of monotone

equilibrium. The existence of monotone equilibria has been extensively studied in the

literature. Athey (2001) provided sufficient conditions for the existence of a monotone

equilibrium in the one-dimensional setting. McAdams (2003) obtained the equilibrium

existence in settings with multidimensional actions and multidimensional types. Reny

(2011) established the existence of a monotone equilibrium in a very general setting.

These papers work with the (weak) single crossing condition,9 which is slightly weaker

than the condition of increasing differences. McAdams (2003) further assumed quasi-

supermodularity for interim payoff function Vi. Note that the supermodularity condition

is automatically satisfied in Athey (2001), which focuses on the single dimensional setting.

Topkis (1978) indicated that supermodularity and the increasing differences condition

can be easily characterized by smooth functions. Milgrom and Shannon (1994) pointed out

that quasi-supermodularity and the single crossing condition may seem abstract and not

easy to check, and instead provided characterizations for supermodularity and increasing

differences condition. In Section 5.1, we provide an example to demonstrate that the

increasing differences condition is sharp in the general setting. In this example, (1)

players have single dimensional independent types and interdependent payoffs; (2) the single

crossing condition holds for all the players; (3) the increasing differences condition fails for

one player; but (4) there does not exist a perfect monotone equilibrium.

In Section 6.1 below, we study the specific IPV setting; that is, Bayesian games with

independent private values. We show that in this classic setting, the existence of a perfect

monotone equilibrium can be obtained under the single crossing condition.

Our result can be extended to the more general setting in which the action spaces are

compact metric spaces and the type spaces are general measure spaces. We choose to work

with the Euclidean space in Theorem 1 for simplicity. In Section 6.2, we show that the

above equilibrium existence result still holds in the general environment as in Reny (2011)

under our Assumption 1.

Remark 3 (The key of the proof). To prove the existence of a perfect monotone equilibrium

in the game G, we construct a sequence of games {Gm}∞m=1 converging to G. The key of

the construction is summarized below.

9Given g−i, player i’s interim payoff satisfies the single crossing condition in Milgrom and Shannon (1994)
if for aHi > aLi and tHi > tLi , Vi(a

H
i , t

L
i , g−i(·)) − Vi(a

L
i , t

L
i , g−i(·)) ≥ (>)0 implies that Vi(a

H
i , t

H
i , g−i(·)) −

Vi(a
L
i , t

H
i , g−i(·)) ≥ (>)0. Reny (2011) adopted a weaker version of this condition.
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• Each Gm is a slight perturbation of G in the following sense. The game Gm differs

from the limit game G only in its payoff functions: when players play the action profile

a at type profile t, player i’s payoff umi (a, t) in Gm equals ui(a
m, t), where amj is a

completely mixed strategy putting probability 1− 1
m at the action aj for each player j.

• It is shown that each game Gm satisfies Assumption 1 above, and has a monotone

equilibrium gm. Importantly, gm can be interpreted as a completely mixed strategy gm

in the game G such that gmi is an approximate best response of gm−i for each player i.

The sequence {gm} has a convergent subsequence {gmk}∞k=1 with the limit g. We show

that g is a perfect monotone equilibrium in the original game G.

By interpreting gm as a completely mixed strategy gm in the game G, the expected payoff

based on gm inherits the increasing differences condition, which is a cardinal property. On

the other hand, it is well known that the single crossing condition is an ordinal property,

which often fails to hold when taking expectations.

If the action set Ai is finite for each i ∈ I, then it is well known that any perfect

equilibrium satisfies the desirable feature of admissibility; that is, players do not play weakly

dominated strategies.10 However, if the action sets are not finite, then an admissible perfect

equilibrium may fail to exist. This issue has been demonstrated in Simon and Stinchcombe

(1995, Example 2.1), and still appears even if one considers monotone equilibria. In

Example 4 below, we provide a countable-action Bayesian game with an inadmissible perfect

equilibrium. To deal with this issue, in the infinite-action setting we adopt the notion of

limit undominatedness from Bajoori, Flesch and Vermeulen (2016).

For each player i ∈ I, an action ai ∈ Ai is said to be weakly dominated if there exists

a probability measure σi ∈ M(Ai) such that for λi-almost all ti,

(1). Eg−i(ui|ti, ai) ≤ Eg−i(ui|ti, σi) for any strategy profile g−i; and

(2). there exists a strategy profile ĝ−i such that Eĝ−i
(ui|ti, ai) < Eĝ−i

(ui|ti, σi).

A probability measure σi ∈ M(Ai) is said to be undominated for a type ti if there is no

probability measure in M(Ai) that weakly dominates σi.

Definition 6. 1. Admissibility. A strategy profile g is said to be admissible if

the induced action distribution
∫
Ti
gi(ti)λi(dti) puts zero probability on any weakly

dominated action for each player i ∈ I.

2. Limit undominatedness. A strategy gi is called limit undominated if there is a

measurable set Si ⊆ Ti with λi(Si) = 0 such that for any ti ∈ Ti\Si, there is a

sequence of undominated probability measures {σki }k≥1 on the action space Ai for

which ρ(σki , gi(ti, ·)) → 0 as k → ∞. A strategy profile g = (g1, g2, · · · , gn) is called

limit undominated if gi is limit undominated for every player i.

Corollary 1. 1. If Ai is finite for each i ∈ I, then any perfect monotone equilibrium is

admissible.

10For completeness, we formalize this statement as Lemma 1 and provide a proof in Appendix.
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2. If Ai is a complete sublattice in Rs, then any perfect monotone equilibrium is limit

undominated.

4 Discontinuous Bayesian Games

In many important applications of Bayesian games, such as auctions and price

competitions, it is natural to consider monotone equilibrium as players with higher

valuations/costs are inclined to submit higher bids/charge higher prices. However,

Theorem 1 cannot be directly applied to those applications, because the payoffs often

exhibit discontinuity when a tie occurs. In this section, we shall demonstrate how to apply

our result to show the existence of perfect monotone equilibria in various economic settings

with discontinuous payoffs, such as first-price auctions, all-pay auctions, and Bertrand

competitions.

First-price auctions

Consider the following first-price single-unit auction with affiliated types. There are

n ≥ 2 bidders. The value of bidder i is vi ∈ [0, 1]. The joint density for bidders’ values is

f : [0, 1]n → R+. Players have affiliated types. That is, for any value profiles v and v′,

f(v ∨ v′) · f(v ∧ v′) ≥ f(v) · f(v′).

After receiving their values, each bidder i submits a bid bi from {Q} ∪ [bi, bi], where

Q < bi ≤ 0 and Q corresponds to not participating in the auction. The bidder submitting

the highest bid above Q wins the object, with tie-breaking done randomly and uniformly.

If bidder i wins the object, then her payoff is vi − bi. Otherwise, bidder i receives payoff 0.

To be precise, the payoff of bidder i is

ui(b, v) =

 1
#|Iw|(vi − bi), if bi = maxj∈I bj > Q,

0, otherwise,

where Iw = {i ∈ I : bi = max
j∈I

bj > Q} is the set of bidders submitting the highest bid above

Q.

Proposition 1. A perfect monotone equilibrium exists in first-price auctions with affiliated

types.

All-pay auctions

Next, we consider an all-pay auction game with interdependent payoffs and affiliated

types. Each bidder i receives a private signal ti ∈ Ti = [0, 1]. The joint density

is f : [0, 1]n → R+. After receiving their signals, each bidder i submits a bid from

Bi = {Q} ∪ [bi, bi], where the quit option Q < bi for all i.

11



The bidder submitting the highest bid above Q wins the object, with tie-breaking done

randomly and uniformly. All the bidders who bid above Q need to pay their bids. If

bidder i wins the object at bid bi, then her payoff is given by wi(bi, t) − bi; otherwise,

bidder i receives payoff −bi. If bidder i quits the game, then she receives payoff 0. In

particular, bidder i’s payoff is

ui(b, t) =


1

#|Iw|wi(bi, t)− bi, if bi = maxj∈I bj > Q;

0, if bi = Q;

−bi, otherwise.

We make the following assumption on the payoff functions.

Assumption 2. 1. The payoff function wi is bounded and measurable on [bi, bi]×[0, 1]n,

and continuous in bi for each t ∈ [0, 1]n.

2. The function wi(bi, t) is increasing in t−i and strictly increasing in ti.

3. The difference wi(b
H
i , t)− wi(b

L
i , t) is increasing in t whenever bHi > bLi ≥ bi.

Proposition 2. Under Assumption 2, an all-pay auction with affiliated types possesses a

perfect monotone equilibrium.

Bertrand competitions with unknown costs

The third application is a price competition game in which firms have private costs.

There are n firms that compete by setting prices pi ∈ [0, pi], where pi ≥ 1 for each i. Each

firm i knows its marginal cost ci ∈ [0, 1]. The joint density is f : [0, 1]n → R+. The market

demand is given by D(p), where p = (p1, p2, · · · , pn), and D(p) is continuous in p.

If pi = min
1≤j≤n

pj , then Di(p) =
D(p)

#{j:pj=pi} . Otherwise, Di(p) = 0. The demand function

Di(p) is increasing in p−i and decreasing in pi. Firm i’s profit is

ui(ci, pi, p−i) = (pi − ci)Di(p).

Proposition 3. The Bertrand competition with affiliated unknown costs has a perfect

monotone equilibrium.

Remark 4. Given a Bayesian game G with discontinuous payoffs, the proofs for the

propositions above proceed as follows. We first repeat the argument in Remark 3 to construct

a sequence of perturbed games {Gm}, and then further discretize Gm to {Gmk}k≥1 for each

m ≥ 1.

1. In each Gmk, a monotone equilibrium gmk exists.

2. Taking k → ∞, we get a monotone strategy gm in Gm, which can be interpreted as a

completely mixed strategy in G.
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3. Taking m→ ∞, we get a monotone strategy g in G. The aim is to show that g is an

equilibrium in the original game G.

The difficulty in this double-limit approach is that gm may not be an equilibrium in Gm

in the second step. In the literature, to make sure that the limit monotone strategy gm is

an equilibrium in Gm when invoking this kind of asymptotic argument, a key step is to

show that player i’s interim payoff at (almost all) type ti by taking action gmi (ti) against

gm−i is nonnegative, as otherwise player i can choose to quit (see, for example, Reny and

Zamir (2004)). In our game Gm, as gm is interpreted as a completely mixed strategy in

G, player i’s payoff induced by gm is written as the summation of countably many payoff

terms. This summation is still nonnegative. However, to adopt the standard limit argument

in the literature, we need every term in this summation to be nonnegative, which may not

be true. We show that this issue can be addressed in a large class of applications.

5 Examples

5.1 A Bayesian game satisfying SCC but has no perfect

monotone equilibrium

Below, we provide a simple Bayesian game, in which there are only two players and

each player has binary actions. We shall verify that each player’s interim payoff satisfies

the single crossing condition when opponents adopt monotone strategies, and only player 1’s

payoff violates the increasing differences condition. This game has a monotone equilibrium,

but has no perfect monotone equilibrium. It demonstrates that the increasing differences

condition is in general sharp.

Example 1. There are two players {1, 2}. Their types are independently and uniformly

drawn from the unit interval [0, 1]. Let ti denote player i’s type. Both players have binary

actions {1, 2}. The payoff tables are given below.

Player 2
1 2

Player 1
1 5

2
− 4

3
t1

1
2
+ 1

2
t2

2 55
24

− t2
6
− 7

6
t1 2 + t2 − 7

6
t1

Table 1: Player 1’s payoff

Player 1
1 2

Player 2
1 −1 7
2 1 −1

Table 2: Player 2’s payoff

Note that player 2’s payoff does not depend on types, and thus the increasing differences

condition holds. The supermodularity condition is trivially satisfied as both players have

single dimensional action spaces.

Claim 1. 1. The game satisfies the single crossing condition, but not the increasing

differences condition.

13



2. This game has a unique monotone equilibrium.

3. This game does not possess any perfect monotone equilibrium.

5.2 Two auction games with both perfect and imperfect

monotone equilibria

In this section, we provide two examples of auction games. Both examples possess

imperfect monotone equilibria. It will be clear that the examples satisfy Assumption 1.

Thus, both examples also have perfect monotone equilibria. The first example revisits the

motivating example of the first-price auction in the introduction. The second example is a

second-price auction in the IPV setting.

Example 2 (First-price auction). There are two bidders. Bidders 1’s valuation v1 is

uniformly drawn from the interval [0, 5], and bidder 2’s valuation v2 is uniformly drawn

from the interval [7, 8]. The action spaces for both bidders are {0, 1, 2, · · · , 8}. The bidder

who submits a higher bid wins the good and pays his bid. If they offer the same bid amount,

then the two bidders break the tie by flipping a coin.

In the introduction, we have provided a monotone equilibrium that is imperfect. Below,

we provide a perfect monotone equilibrium for this first-price auction.

Claim 2. The strategy profile

b1(v1) =


0 v1 ∈ [0, 32),

1 v1 ∈ [32 , 3),

3 v1 ∈ [3, 5];

and b2(v2) ≡ 3

is a perfect monotone equilibrium.

In the following, we provide another example of a second-price auction.

Example 3 (Second-price auction). There are two bidders. Bidders 1 and 2’s valuations

v1 and v2 are uniformly drawn from the interval [1, 2]. The action spaces for both bidders

are {0, 1, 2}. The bidder who offers a higher bid wins the good and pays another bidder’s

bid. If they offer the same bid amount, then they win the good by flipping a coin.

It is clear that b̂1 ≡ 0 and b̂2 ≡ 2 forms a monotone equilibrium. Given that bidder 2

always bids 2, bidder 1’s payoff is at most 0. Conversely, if bidder 1 always bids 0, then

bidder 2’s highest payoff is v2, achievable by bidding 2. However, bidding 0 is weakly

dominated by bidding 1 for bidder 1. In particular, the payoff of bidder 1 when he submits

a bid 0 is always less than or equal to his payoff when he submits a bid 1. When bidder 2

submits 0, bidder 1’s payoff strictly increases by bidding 1. Therefore, b̂1 ≡ 0 and b̂2 ≡ 2 is

an imperfect monotone equilibrium.
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In the following, we provide a perfect monotone equilibrium for this second-price

auction.

Claim 3. The strategy profile

bi(vi) =

1 vi ∈ [1, 32),

2 vi ∈ [32 , 2],

for i ∈ {1, 2} is a symmetric perfect monotone equilibrium.

6 Extensions

In this section, we study two extensions of Theorem 1. The first extension focuses on

the setting with one-dimensional action spaces and type spaces as in Athey (2001). We

show that the single crossing condition is sufficient for the existence of a perfect monotone

equilibrium in Bayesian games with independent private values. The second extension

concerns with Bayesian games with general action spaces and type spaces as in Reny (2011).

We generalize Theorem 1 to this more general environment.

6.1 Bayesian games with one-dimensional action spaces and

type spaces

We focus on a class of Bayesian games with one-dimensional action spaces and type

spaces. For simplicity, we shall only describe the differences from the model in Section 2.1.

• For each player i ∈ I, the action space is Ai, which is a compact subset of R. Denote

ai ≡ minAi and ai ≡ maxAi.

• The type space of player i is Ti = [ti, ti].

Assumption 3 (IPV). For each i ∈ I,

1. player i has private values: ui(a, t) = ui(a, ti); and

2. types are independent: f(t) = f1(t1) . . . fn(tn), where fi is the density for player i’s

type ti.

Assumption 4 (SCC). For each i ∈ I, player i’s interim payoff Vi(ai, ti;α−i(·)) satisfies

the single crossing condition in (ai, ti) for any α−i ∈ F−i.

Theorem 2. Suppose that Assumptions 3 and 4 hold. For each player i ∈ I, if either Ai

is finite, or Ai = [ai, ai] and ui(a, t) is continuous in a, then there exists a perfect monotone

equilibrium.
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Remark 5. Recall the discussions in Remark 3. To show the existence of a perfect

monotone equilibrium in a game G, we construct a sequence of games {Gm}∞m=1 that

converges to G, where each game Gm differs from G only in its payoff. By imposing

the increasing differences condition on Vi(ai, ti; g−i(·)), we can show that V m
i (ai, ti; g−i(·))

also satisfies the increasing differences condition. It further implies that V m
i (ai, ti; g−i(·))

satisfies the single crossing condition. In the single-dimensional setting, one can apply

Theorems 1 and 2 in Athey (2001) to obtain a monotone equilibrium in Gm. This argument

would not work in general if Vi(ai, ti; g−i(·)) only satisfies the single crossing condition.

However, in the IPV setting, it can be shown that SCC on the payoff Vi implies SCC on

the payoff V m
i . As a result, we are able to weaken the increasing differences condition to

the single crossing condition and obtain Theorem 2.

In Example 1 above, player 1 has an interdependent payoff that depends on both players’

types. The interim payoff V1 satisfies the single crossing condition, but not the increasing

differences condition. As shown in Claim 1, there is no perfect monotone equilibrium.

6.2 Bayesian games with general action spaces and type

spaces

Below, we follow Reny (2011) to study a class of Bayesian games with general action

spaces and type spaces. The action spaces are compact locally complete metric semilattices

and the type spaces are partially ordered probability spaces.

Let (L,≥) be a partially ordered set. If L is endowed with a sigma-algebra L, then the

partial order ≥ on L is called measurable if the set {(a, b) ∈ L × L : a ≥ b} ∈ L ⊗ L. The

partial order ≥ on L is called closed if {(a, b) ∈ L × L : a ≥ b} is closed in the product

topology on L × L. The partial order ≥ is called convex if L is a subset of a real vector

space and {(a, b) ∈ L× L : a ≥ b} is convex.

We say that L is a semilattice if every pair of points in L has a least upper bound in

L. A lattice is a semilattice. If L is a semilattice endowed with a metric d and the join

operator ∨ is a continuous function from L × L to L, then L is a metric semilattice. A

semilattice L is complete if and only if the least upper bound ∨S ∈ L for every nonempty

subset S ⊂ L. A metric semilattice L is locally complete if for every a ∈ L and every

neighbourhood U of a, there is a neighbourhood W of a contained in U such that every

nonempty subset S ⊂W has a least upper bound ∨S in W .

Next, we describe Bayesian games with general action spaces and type spaces.

• The player space is I = {1, 2, . . . , n}, n ≥ 2.

• For each i ∈ I, the action space of player i is Ai, which is a compact metric space and

a semilattice with a closed partial order.

• Either (i) Ai is a convex subset of a locally convex topological vector space and the

partial order on Ai is convex; or (ii) Ai is a locally complete metric semilattice. It is

possible for (i) to hold for some players and (ii) to hold for others.

16



• The type space of player i ∈ I is Ti endowed with the σ-algebra Ti. The set Ti is

partially ordered, and the partial order on Ti is measurable.

• The common prior over the players’ type spaces is a countably additive probability

measure λ on T . Let (Ti, Ti, λi) be an atomless probability space, where λi is the

marginal of λ on Ti for each i ∈ I.

• There is a countable subset T 0
i of Ti such that every set in Ti with positive probability

under λi contains two points between which lies a point in T 0
i .

11

• Given the action profile a ∈ A and type profile t ∈ T , player i’s payoff is ui(a, t),

which is bounded, jointly measurable, and continuous in a for every t ∈ T .

Theorem 3. Under Assumption 1, there exists a perfect monotone equilibrium.

Remark 6. To prove Theorem 3, we repeat the argument outlined in Remark 3. Recall

that a sequence of games {Gm} is carefully constructed to converge to the limit game

G. Each game Gm also satisfies Assumption 1. Reny (2011) proved the existence of

monotone equilibria by assuming that each player i’s interim payoff satisfies weak quasi-

supermodularity and weak single crossing condition. Our Assumption 1 is stronger than

the weak quasi-supermodularity and weak single crossing condition. Thus, there exists a

monotone equilibrium in Gm, which is interpreted as a completely mixed strategy in G. By

(possibly) passing to a subsequence, we get a monotone equilibrium in the limit game G that

is also perfect. As the argument is almost the same as the proof of Theorem 1, we omit it

for simplicity.

7 Conclusion

In this paper, we propose an equilibrium refinement called “perfect monotone equi-

librium” to address the issue that players may choose weakly dominated strategies in

monotone equilibria. In Bayesian games with finitely many actions, a perfect monotone

equilibrium is admissible; in Bayesian games with infinitely many actions, a perfect

monotone equilibrium is limit undominated.

In a general class of Bayesian games where each player’s action set is a sublattice of

multi-dimensional Euclidean space and players’ types are also multi-dimensional, to prove

the existence of a perfect monotone equilibrium, we make two widely-adopted assumptions:

players’ payoffs are supermodular in own actions and have increasing differences in own

actions and types. These two assumptions imply complementarity in own actions and

monotone incremental returns in own types. We demonstrate that our condition is sharp

via counterexamples. To show the usefulness of our result in economic settings, we

provide various illustrative applications, including first-price auctions, all-pay auctions,

and Bertrand competitions. Our result can be further extended to the IPV setting as in

11For a, b, c ∈ L, we say that b lies between a and c if a ≥ b ≥ c.
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Athey (2001), and the more general setting as in Reny (2011) where the action spaces

are compact locally complete metric semilattices and the type spaces are partially ordered

probability spaces.
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8 Appendix

8.1 Proof of Theorem 1 and Corollary 1

We first present the proof of Theorem 1, organized into three distinct steps. In Step 1,
we construct a sequence of Bayesian games, {Gm}∞m=1, that converges to the limit Bayesian
game G, where Gm differs from G only in its payoff functions. In Step 2, we demonstrate
that each Gm possesses a monotone equilibrium gm, and we establish the existence of a
subsequence of {gm}∞m=1 that converges to an increasing strategy g. In Step 3, we show
that g is a perfect equilibrium. Given that g is an increasing strategy, it follows that g
is a monotone equilibrium and, therefore, a perfect monotone equilibrium, completing our
proof.

Step 1. Since Ai is a complete sublattice, and thus a compact metric space, for each i ∈ I,
there exists a countable dense subset Si ⊆ Ai, where Si = {ski }∞k=1. For each ai ∈ Ai and
m ∈ N, let ami denote a completely mixed probability measure on Ai putting probability
1− 1

m on action ai, where a
m
i = (1− 1

m)δai +
1
m

∑∞
k=1

1
2k
δski

. In game Gm, player i’s payoff

function is umi (a, t), and

umi (a, t) = ui(a
m, t) =

∑
s1∈S1∪{a1}

. . .
∑

sn∈Sn∪{an}

am1 (s1) · · · amn (sn)ui(s1, . . . , sn, t).

Clearly, umi converges pointwise to ui.

Step 2. Given any increasing strategy profile ϕ. For each m ∈ N, i ∈ I, let ϕmi =
(1− 1

m)ϕi +
1
m

∑∞
k=1

1
2k
δski

be a completely mixed strategy profile. Let Fi = {δski }
∞
k=1 be a

set of dirac measures on Ai. Then we have V m
i (ai, ti;ϕ−i(·)) = Vi(a

m
i , ti;ϕ

m
−i), where

Vi(a
m
i , ti;ϕ

m
−i(·)) =

∑
si∈Si∪{ai}

∑
j ̸=i,pj∈Fj∪{ϕj}

ami (si)ϕ
m
1 (p1) · · ·ϕmn (pn)Vi(si, ti; p−i(·)),

and each pj is an increasing strategy of player j. Notably, (1) if Vi(ai, ti;ϕ−i(·)) is
supermodular in ai, then V

m
i (ai, ti;ϕ−i(·)) is also supermodular in ai; (2) if Vi(ai, ti;ϕ−i(·))

satisfies IDC in (ai, ti), then V
m
i (ai, ti;ϕ−i(·)) also satisfies IDC in (ai, ti). By Reny (2011,

Theorem 4.1 and Propositon 4.4), we know that Gm possesses a monotone equilibrium
gm. Applying Helly’s selection theorem, there exists a subsequence {gmk}∞mk=1 of {gm}∞m=1

such that {gmk}∞mk=1 converges to a measurable monotone strategy g for almost all t ∈ T .
Consequently, we have lim

k→∞
ρ(gmk

i (ti, ·), gi(ti, ·)) = 0, for each player i, for almost all ti.

Step 3. For each m ∈ N, let gmi = (1− 1
m)gmi + 1

m

∑∞
k=1

1
2k
δski

. Clearly, gmi is a sequence
of completely mixed strategy profiles. By combining the definition of gmi with the fact that
lim
k→∞

ρ(gmk
i (ti, ·), gi(ti, ·)) = 0, we obtain lim

k→∞
ρ(gmk

i (ti, ·), gi(ti, ·)) = 0, for each player i, for

almost all ti. Note that gm is an equilibrium of game Gm for each m ∈ N, meaning that
for almost all ti, V

m
i (gm(ti), ti; g

m
−i) ≥ V m

i (ai, ti; g
m
−i) for all ai ∈ Ai, which equivalents to

Vi(g
m
i (ti), ti, g

m
−i) ≥ Vi(a

m
i , ti, g

m
−i) for all ai ∈ Ai. By the definitions of gmi and ami , the

above formula implies that Vi(g
m
i (ti), ti, g

m
−i) ≥ Vi(ai, ti, g

m
−i) for all ai ∈ Ai. Thus, we have

0 ≤ lim
k→∞

ρ(gmk
i (ti, ·),BRi(ti, g

mk
−i )) ≤ lim

k→∞
ρ(gmk

i (ti, ·), gmk
i (ti, ·)) = 0.
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By the inequality V m
i (gm(ti), ti; g

m
−i) ≥ V m

i (ai, ti; g
m
−i), and letting m tend to infinity, we

conclude that g is an equilibrium of game G, and therefore g is a perfect equilibrium.
Since g is a monotone strategy, it follows that g is a perfect monotone equilibrium. This
completes the proof of Theorem 1.

Bajoori, Flesch and Vermeulen (2016) presented an example of a two-player game with a
unique Nash equilibrium in which both players adopt a weakly dominated strategy, making
the equilibrium inadmissible. We revisit their example in Example 4, demonstrating the
existence of a unique inadmissible perfect equilibrium. Since a perfect equilibrium may not
necessarily be admissible, they introduced the concept of “limit undominated” and proved
that any perfect equilibrium is limit undominated if for each t ∈ T , the payoff functions
ui(a, t) is continuous in a. Their proof of limit undominated further pointed out that if a
probability measure σi is a best response for player i against a completely mixed strategy
profile at some type ti, then σi is undominated. Corollary 1 follows from the following
lemma.

Lemma 1. A perfect equilibrium is admissible if Ai is finite for each i ∈ I.

Proof. Suppose an action ai ∈ Ai is weakly dominated, meaning that there exists a
probability measure σi ∈ M(Ai) such that for λi almost all ti,

(1). Eg−i(ui|ti, ai) ≤ Eg−i(ui|ti, σi), for any strategy profile g−i;

(2). there exists a strategy profile ĝ−i such that Eĝ−i
(ui|ti, ai) < Eĝ−i

(ui|ti, σi).
Thus, for player i, δai is dominated by σi for almost all types ti.

Suppose h is a perfect equilibrium. Then there exists a sequence of completely mixed
strategy profiles {hm}m∈Z+ such that, for every player i and for almost all ti, the following
properties hold:

(i). lim
m→∞

ρ(hmi (ti, ·), hi(ti, ·)) = 0;

(ii). lim
m→∞

ρ(hmi (ti, ·),BRi(ti, h
m
−i)) = 0.

From lim
m→∞

ρ(hmi (ti, ·),BRi(ti, h
m
−i)) = 0, we deduce that for almost all ti, there exists

a sequence of corresponding best response {σmi }m∈Z+ (σmi ∈ BRi(ti, h
m
−i)) such that

lim
m→∞

ρ(hmi (ti, ·), σmi ) = 0. Since hm−i is a completely mixed strategy profile, we know that

σm is undominated, and hence σmi (ai) = 0. By conditions (i) and (ii), we conclude that
lim

m→∞
ρ(hi(ti, ·), σmi ) = 0. Because Ai is finite, it follows that hi(ti, ai) = 0 for almost all

ti. Therefore, hi assigns zero probability to a weakly dominated action ai, and hence h is
admissible.

When there are infinitely many actions, a perfect equilibrium may fail to be admissible,
even in games with complete information. For an example involving interval action
spaces and continuous payoffs that yields an inadmissible Nash equilibrium, see Simon
and Stinchcombe (1995). In the following example, we demonstrate the existence of a
unique inadmissible perfect equilibrium.

Example 4. There are two players. The action sets are A1 = A2 = { 1
k}

∞
k=1 ∪ {0}. The

payoff functions u1 and u2 are symmetric; that is, u1(a, b) = u2(b, a) for all a, b ∈ { 1
k}

∞
k=1∪

{0}. The payoff u1 is given in the table below, where player 1 is the row player and player 2
is the column player.
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u1 1 1
2

1
3

1
4

· · · 0

1 0 0 0 0 · · · 0

1
2

1 -1
8

0 0 · · · 0

1
3

0 1
2

- 1
16

0 · · · 0

1
4

0 0 1
4

- 1
32

· · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0

Table 3: Payoff function u1

Claim 4. The strategy profile (0, 0) is an inadmissible perfect equilibrium.

Proof. Notice that the action 0 is weakly dominated by a mixed action σ = (0, 12 ,
1
4 ,

1
8 , · · · , 0),

and (0, 0) is the unique Nash equilibrium. We need to show that the strategy profile (0, 0)
is perfect.

Since this is a symmetric game, we only need to consider player 1. For each m ∈ N, let

σm = (1− 1

m
)δ0 +

1

m

[
(1− 1

m
)δ 1

m
+

1

m

∞∑
k=1

1

2k
δ 1

k

]
.

Clearly, {σm}∞m=1 is a sequence of completely mixed strategies converging to δ0. That is,
lim

m→∞
ρ(σm, δ0) = 0. Given that player 2 plays σm, player 1’s best response is the action

1
m+1 when m is sufficiently large. Thus,

lim
m→∞

ρ(σm,BR1(σ
m)) = lim

m→∞
ρ(σm, δ 1

m+1
) = 0.

It implies that the strategy profile (0, 0) is perfect.

8.2 Proof of Proposition 1 and Proposition 3

The analysis of the Bertrand pricing game is analogous to that of the first-price auction.
Therefore, we proceed by considering the first-price auction in detail and omit a separate
treatment of the Bertrand pricing game here.

We divide the proof into the following steps. In step 1, fix m ∈ N, we construct a
sequence of Bayesian games {Gmk}∞k=1 that converges to the limit Bayesian game Gm.
Here, the game Gm differs from the original game G only in its payoff functions. And
each game Gmk possesses a monotone equilibrium gmk. In step 2, we demonstrate that
there exists a subsequence of {gmk}∞m=1 converges to an increasing strategy gm. In step 3,
we show that gm is a monotone equilibrium in game Gm. Moreover, by applying Helly’s
selection theorem, we establish the existence of a subsequence of {gm}∞m=1 which converges
to a monotone strategy g. In step 4, we show that g is a perfect monotone equilibrium in
game G.

Step 1. Fix m ∈ Z+. Let V m
i (bi, vi;α−i(·)) = Vi(b

m
i , vi;α

m
−i(·)) be bidder i’s interim
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payoff function in game Gm, where bmi = (1 − 1
m)δ{bi} +

1
2mU [bi, bi] +

1
2mδ{Q}, and α

m
j =

(1− 1
2m)αj+

1
2mU [bi, bi]+

1
2mδ{Q}, for each j = 1, 2, · · · , n. For each k ∈ Z+, we construct a

finite set Ak
i ⊆ [bi, bi]∪{Q} such that ∪∞

k=1A
k
i is a dense subset of [bi, bi]∪{Q}, Ak

i ⊆ Ak+1
i

and (∪∞
k=1A

k
i )∩(∪∞

k=1A
k
j ) = {Q} for any i ̸= j. Let V m

i be bidder i’s interim payoff function

and Ak
i be bidder i’s action set in game Gmk. Let β−i(·) be a monotone strategy profile,

and βmj = (1− 1
m)δ{βj}+

1
2mU [bi, bi]+

1
2mδ{Q} be a completely mixed strategy profile. Then,

by simple algebra, we obtain

V m
i (bi, vi;β−i(·)) = (1− 1

m
)

∑
γ−i∈

∏
j ̸=i

{βj ,U [bj ,bj ],δ{Q}}

Vi(bi, vi; γ−j(·))P(γ−i) +Rm
i (vi, β−i),

(1)

where P(γj) = 1− 1
m if γj = βj , and P(γj) = 1

2m if γj ∈ {U [bj , bj ], δ{Q}}. Additionally, we
define P(γ−i) =

∏
j ̸=i P(γj), and set

Rm
i (vi, β−i) =

1

2m

∫
[bi,bi]

1

bi − bi
Vi(b̃i, vi, β

m
−i) db̃i,

where βmj = (1− 1
2m)βj +

1
2mU [bi, bi] +

1
2mδ{Q} for all j ̸= i.

Given a strategy profile γ−i ∈
∏

j ̸=i{βj , U [bj , bj ], δ{Q}}, we divide the players into three

subsets. Let I1 = {j : γj = U [bj , bj ]}, which consists of bidders employing a uniform
distribution strategy over their action sets. Define I2 = {j : γj = δ{Q}}, which includes
bidders with a degenerate strategy, placing all probability mass on Q. Let I3 = I\(I1∪ I2∪
{i}), which contains the remaining bidders. Then, by simple algebra, we obtain

Vi(bi, vi; γ−i(·)) =
∫
[0,1]n−1

ui(bi, vi; γ−i(v−i))f(v−i|vi) dv−i

=

∫
[0,1]n−1

∫
∏

j∈I1

[bj ,bj ]

∏
j∈I1

1

bj − bj
ui(bi, vi; bI1 , QI2 , βI3) ⊗

j∈I1
dbjf(v−i|vi) dv−i

=
∏
j∈I1

1

bj − bj

∫
∏

j∈I1

[bj ,bj ]

∫
[0,1]n−1

ui(bi, vi; bI1 , QI2 , βI3)f(v−i|vi) dv−i ⊗
j∈I1

dbj

=
∏
j∈I1

1

bj − bj

∫
∏

j∈I1

[bj ,bj ]
Vi(bi, vi; δbI1 , δQI2

, βI3) ⊗
j∈I1

dbj ,

where bI1 = (bj)j∈I1 , QI2 = (Q)j∈I2 , βI3 = (βj)j∈I3 , δbI1 = (δ{bj})j∈I1 and δQI2
= (δ{Q})j∈I2 .

For each bidder i ∈ I, let pwi :
∏

j∈I [bj , bj ] → R represent the probability that bidder i wins
given a profile of bids. Additionally, we define pwi (Q, b−i) = 0 for all b−i, meaning that if
bidder i quits the auction, her probability of winning is zero regardless of the bids from
other players. For any monotone strategy profile ψ, for any bi ∈ [bi, bi], we have

Vi(bi, vi;ψ−i) =

∫
[0,1]n−1

ui(bi, vi, ψ−i(v−i))f(v−i|vi) dv−i

=

∫
[0,1]n−1

(vi − bi)p
w
i (bi, ψ−i(v−i))f(v−i|vi) dv−i
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= (vi − bi)

∫
[0,1]n−1

pwi (bi, ψ−i(v−i))f(v−i|vi) dv−i.

Define the aggregate winning probability for bidder i against a strategy profile ψ−i as

pwi (bi, ψ−i) =

∫
[0,1]n−1

pwi (bi, ψ−i(v−i))f(v−i|vi) dv−i.

Therefore, the interim payoff for bidder i given a bid bi and valuation vi against the strategy
profile ψ−i is

Vi(bi, vi;ψ−i) = (vi − bi)p
w
i (bi, ψ−i).

Similarly, define the aggregate winning probability for bidder i against a strategy profile
γ−i as

pwi (bi, γ−i) =
∏

j∈I1

1

bj − bj

∫
∏

j∈I1
[bj ,bj ]

pwi (bi, δbI1 , δQI2
, βI3) ⊗

j∈I1
dbj .

Therefore, the interim payoff for bidder i given a bid bi and valuation vi against the strategy
profile γ−i is

Vi(bi, vi; γ−i(·)) = (vi − bi)p
w
i (bi, γ−i).

Let pwi (bi, β
m
−i) =

∑
γ−i∈

∏
j ̸=i{βj ,U [bj ,bj ],δ{Q}} P(γ−i)p

w
i (bi, γ−i). Then, for any bi ∈ [bi, bi], we

have

V m
i (bi, vi, β−i) = (1− 1

m
)(vi − bi)p

w
i (bi, β

m
−i) +Rm

i (vi, β−i).

Next, we are going to show for each bidder i ∈ I, V m
i (bi, vi;β−i(·)) satisfies IDC(bi, vi)

for any monotone strategy β−i ∈ F−i. For any b
H
i , b

L
i > Q ∈ Ak

i and bHi > bLi ,

V m
i (bHi , vi;β−i(·))− V m

i (bLi , vi;β−i(·))

= (1− 1

m
)[(vi − bHi )pwi (b

H
i , β

m
−i(·))− (vi − bLi )p

w
i (b

L
i , β

m
−i(·))]

= (1− 1

m
)[bLi p

w
i (b

L
i , β

m
−i(·))− bHi p

w
i (b

H
i , β

m
−i(·)) + vi(p

w
i (b

H
i , β

m
−i(·))− pwi (b

L
i , β

m
−i(·)))].

Since pwi (bi, b−i) is increasing in bi for any b−i, we have pwi (b
H
i , β

m
−i(·))− pwi (b

L
i , β

m
−i(·)) ≥ 0.

Thus, V m
i (bHi , vi;β−i(·)) − V m

i (bLi , vi;β−i(·)) is increasing in vi. Note that if bLi = Q,
V m
i (bHi , vi;β−i(·))− V m

i (Q, vi;β−i(·)) = (1− 1
m)(vi − bHi )pwi (b

H
i , β

m
−i(·)), which is obviously

increasing in vi. This shows that V m
i (bi, vi;β−i(·)) satisfies IDC(bi, vi) for any β−i ∈

F−i. By applying Theorem 1, we conclude that each game Gmk possesses a monotone
equilibrium, denoted by gmk.

Step 2. By Helly’s selection theorem, there exists a subsequence {gmnk}∞k=1 of {gmk}∞k=1

such that {gmnk}∞k=1 converges pointwise to a measurable monotone strategy gm for almost
all v ∈ [0, 1]n. Thus, we have lim

k→∞
ρ(gmnk

i (vi, ·), gmi (vi, ·)) = 0, for each bidder i, for λi

almost all vi.

Before we show that gm is an equilibrium of Gm, we first show that no bidder will bid
above her valuation in the strategy gm. Consider a general scenario where k ∈ Z+, i ∈ I,
and vi ∈ [0, 1]. Since gmk is an equilibrium of game Gmk, we have V m

i (gmk
i (vi), vi; g

mk
−i (·)) ≥

V m
i (Q, vi; g

mk
−i (·)). If bidder i has a positive winning probability at her valuation vi with

bidding gmi (vi), that is, P({v−i|maxj ̸=i g
mk
j (vj) ≤ gmk

i (vi)}|vi) > 0, then gmk
i (vi) ≤ vi. In
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other words, she won’t bid above her valuation if she has a positive winning probability.
Otherwise, bidder i will receive a payoff worse than quitting the game at her valuation vi,
which leads to a contradiction.

Claim 5. For any k ∈ N and i ∈ I, we have gmk
i (vi) ≤ vi.

Proof. We proceed with this proof by contradiction. Suppose vi > 0 and gmk
i (vi) > vi.

Since gmk is a monotone strategy profile, the set {v−i|maxj ̸=i g
mk
j (vj) ≤ gmk

i (vi)} is a

product of intervals. As gmk is a monotone equilibrium in game Gmk, we know that
P({v−i|maxj ̸=i g

mk
j (vj) ≤ gmk

i (vi)}|vi) = 0. In other words, there exists a nonempty subset

I1 ⊆ I such that for each bidder j ∈ I1, g
mk
j (vj) ≥ gmk

i (vi) for all vj ∈ (0, 1]. Meanwhile,

for each bidder j ∈ I\I1, there exists a nonnegligible subset of [0, 1] such that gmk
j (vj) ≤

gmk
i (vi). For each j ∈ I1, since each game Gmk has finite action sets, there exists the
minimum mass action of gmk

j , denoted by amk
j . Let j∗ ∈ argmaxj∈I1a

mk
j . Then bidder

j∗’s payoff from bidding gmk
j (vj) will be worse than quitting the auction if her valuation

vj ∈ (0,min{amk
j∗ , v

∗
j∗}), where v∗j is the maximum valuation such that gmk

j∗ (v∗j ) = amk
j∗ .

Thus, we arrive at a contradiction to the equilibrium property. Consequently, we have
gmk
i (vi) ≤ vi, for any k ∈ N and i ∈ I.

By Claim 5 and the fact that {gmnk}∞k=1 converges pointwise to gm, we conclude that
gmi (vi) ≤ vi for almost all vi ∈ [0, 1], for all i ∈ I.

Step 3. Throughout the remainder of the proof, it will be convenient to adopt a convention
regarding the bidbi = Q. Specifically, notice that Q is an isolated point. Thus, b′i → Q+

(which means b′i > Q and b′i → Q) will represent b′i = Q.
Let Wi = {v−i|bi ≥ maxj ̸=i g

m
j (vj)} be the set of types (a subset of [0, 1]n−1) for which

bidder i’s bid bi is the maximum bid against gm−i(·), where gm(·) is a monotone strategy
profile. Define E(·|vi,Wi) = 0 if P(Wi|vi) = 0. Notice that when considering the maximum
payoff of bidder i at her valuation vi, her maximum profit will be greater than or equal to
the payoff she can achieve by choosing bi = vi (or bi = Q)). Moreover, if bidder i chooses
bi > vi at her valuation vi, her payoff will be at most equal to the payoff she can receive at
bi = vi (or bi = Q). Thus, for a fixed vi, in order to find bidder i’s maximum payoff at her
valuation vi, we only need to consider bi ≤ vi.

For bi ≤ vi, we have

Vi(bi, vi; g
m
−i(·)) = P(Wi|vi)E[(vi − bi)p

w
i (bi, g

m
−i(v−i))|vi,Wi]

≤ P(Wi|vi)E[(vi − bi)|vi,Wi]E[pwi (bi, gm−i(v−i))|vi,Wi]

≤ P(Wi|vi)E[(vi − bi)|ci,Wi]

= lim
b′i→b+i

Vi(b
′
i, vi; g

m
−i(·)), (2)

where the first inequality follows by Milgrom and Weber (1982, Theorem 23), since
1 − pwi (bi, g

m
−i(v−i)) is increasing in v−i. The second inequality follows because 0 ≤

pwi (bi, g
m
−i(v−i)) ≤ 1 and P(Wi|ci)E[(vi − bi)|vi,Wi] ≥ 0. The last equation holds since

(i) pwi (b
′
i, g

m
−i(v−i)) = 1 for all b′i > bi and v−i ∈ Wi, and (ii) for all v−i /∈ Wi,

pwi (b
′
i, g

m
−i(v−i)) → 0 for b′i > bi and b

′
i → bi.

Notably, Inequality (2) also holds for any other monotone strategy profile. Since Vi is
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bounded, by Lebesgue dominated convergence theorem, we have

Vi(bi, vi; γ−i(·)) ≤ lim
b′i→b+i

Vi(b
′
i, vi; γ−i(·)). (3)

By combining Equation (1) and Inequality (3), and observing that Rm
i (vi, g

m
−i) is

independent of bi, we conclude that the inequality holds for all bi ≤ vi.

V m
i (bi, vi; g

m
−i(·)) ≤ lim

b′i→b+i

V m
i (b′i, vi; g

m
−i(·)). (4)

For each player j, since her strategy gmj (vj) contains at most countably many mass

points and Ak
j becomes dense in Aj , it follows that for any bi ∈ [bi, bi] ∪ {Q}, any ϵ > 0,

and for almost all vi, there exists K ∈ Z+, and bi ∈ AK
i such that

lim
b′i→b+i

V m
i (b′i, vi; g

m
−i(·)) ≤ V m

i (bi, vi; g
m
−i(·)) + ϵ

≤ V m
i (bi, vi; g

mnk
−i (·)) + 2ϵ for k ≥ K

≤ V m
i (gmnk

i (vi), vi; g
mnk
−i (·)) + 2ϵ for k ≥ K, (5)

where the first and second lines hold because bi can be selected such that the probability
that any gmj (·) equals bi is arbitrarily small. The third line follows since bi ∈ AK

i is a
feasible action for player i in Gmnk for every k ≥ K, and gmnk is an equilibrium in game
Gmnk .

The winning probability for bidder i, denoted pwi (bi, b−i), is increasing in bi and
decreasing in b−i. Therefore, we conclude that p

w
i (g

mnk
i (vi), g

mnk
−i (v−i)) forms a sequence of

functions that is monotone in each of its arguments, being increasing in bi and decreasing
in b−i. Note that

Vi(g
mnk
i (vi), vi; g

mnk
−i ) = E[(vi − gmnk

i (vi))p
w
i (g

mnk
i (vi), g

mnk
−i (v−i))|vi].

Hence, by Helly’s selection theorem (extracting a subsequence if necessary), there exists a
function ηi : [0, 1]

n → [0, 1] for almost all v ∈ [0, 1]n such that

E[(vi − gmnk
i (vi))p

w
i (g

mnk
i (vi), g

mnk
−i (v−i))|vi]

converges to
E[(vi − gmi (vi))ηi(v)|vi],

by the dominated convergence theorem. Recall that Ank
i ∩ Ank

j = {Q} for all i ̸= j. Thus,
pwi (g

mnk
i (vi), g

mnk
−i (v−i)) ∈ {0, 1} for all nk ∈ Z+ and v ∈ [0, 1]n. One can interpret ηi(·) as

a tie-breaking rule in the limit, where ηi(v) ∈ {0, 1} and
∑n

j=1 ηj(v) ≤ 1.

Given a strategy profile γnk ∈
∏

j∈I{g
mnk
j , U [bj , bj ], δ{Q}}, define the probability of each

strategy as follows:

P(γnk
j ) = 1− 1

m
if γnk

j = gnk
j ,

and

P(γnk
j ) =

1

2m
if γnk

j = U [bj , bj ] or γ
nk
j = δ{Q}.

26



Similarly, define P(γnk
−i ) =

∏
j ̸=i P(γ

nk
j ). Then, by simple algebra, we obtain

V m
i (bi, vi; g

mnk
−i (·)) = (1− 1

m
)

∑
γ
nk
−i ∈

∏
j ̸=i

{gmnk
j ,U [bj ,bj ],δ{Q}}

Vi(bi, vi; γ
nk
−j(·))P(γ

nk
−i ) +Rm

i (vi, g
mnk
−i ).

(6)

Given a strategy profile γnk
−i ∈

∏
j ̸=i{g

mnk
j , U [bj , bj ], δ{Q}}, we divide the players into

three subsets. Let Ink
1 = {j : γnk

j = U [bj , bj ]}, which consists of bidders employing a
uniform distribution strategy over their action sets. Define Ink

2 = {j : γnk
j = δ{Q}}, which

includes bidders with a degenerate strategy, placing all probability mass on Q. Let Ink
3 =

I\(Ink
1 ∪ Ink

2 ∪ {i}), which contains the remaining bidders. Then, by simple algebra, we
obtain

Vi(bi, vi; γ
nk
−i (·)) =

∫
[0,1]n−1

ui(bi, vi; γ
nk
−i (v−i))f(v−i|vi) dv−i

=

∫
[0,1]n−1

∫
∏

j∈I
nk
1

[bj ,bj ]

∏
j∈Ink

1

1

bj − bj
(vi − bi)p

w
i (bi, bInk

1
, QI

nk
2
, gmnk

I
nk
3

(vInk
3
))

⊗
j∈Ink

1

dbjf(v−i|vi) dv−i

= (vi − bi)

∫
[0,1]n−1

∫
∏

j∈I
nk
1

[bj ,bj ]

∏
j∈Ink

1

1

bj − bj
pwi (bi, bInk

1
, QI

nk
2
, gmnk

I
nk
3

(vInk
3
))

⊗
j∈Ink

1

dbjf(v−i|vi) dv−i

= (vi − bi)

∫
[0,1]n−1

p̂wi (bi, γ
nk
−i (v−i))f(v−i|vi) dv−i,

where bInk
1

= (bj)j∈Ink
1
, QI

nk
2

= (Q)j∈Ink
2
, gmnk

I
nk
3

= (gmnk
j )j∈Ink

3
, δb

I
nk
1

= (δ{bj})j∈Ink
1
, δQ

I
nk
2

=

(δ{Q})j∈Ink
2
, and

p̂wi (bi, γ
nk
−i (v−i)) =

∫
∏

j∈I
nk
1

[bj ,bj ]

∏
j∈Ink

1

1

bj − bj
pwi (bi, bInk

1
, QI

nk
2
, gmnk

I
nk
3

(vInk
3
)) ⊗

j∈Ink
1

dbj .

Let γj = gmj if γnk
j = gmnk

j for all k ∈ Z+, and γj = γnk
j if γnk

j = U [bi, bi] for all
k ∈ Z+ or γnk

j = δ{Q} for all k ∈ Z+. Similarly, we can find a function ηγi : [0, 1]
n → [0, 1]

such that for almost all v ∈ [0, 1]n, E[(vi − bi)p̂
w
i (pi; γ

nk
−j)|vi] (extracting a subsequence if

necessary) converges pointwise to E[(vi−bi)ηγi (t)|vi] by the dominated convergence theorem.
Besides, given vi, we have Rm

i (vi, g
mnk
−i ) = 1

2m

∫
[bi,bi]

1
bi−bi

Vi(b̃i, vi, g̃
mnk
−i ) db̃i, where g̃

mnk
j =

(1− 1
m)gmnk

j + 1
2mU[bj ,bj ]

+ 1
2mδ{Q}, for each j ̸= i. Since gm−i has at most countably many

mass points and gmnk
−i converges pointwise to gm−i, by Lebesgue dominated convergence

theorem, we know it converges to Rm
i (vi, g

m
−i). Since the set

∏
j ̸=i{gmj , U [bj , bj ], δ{Q}} is

finite, and because ϵ > 0 is arbitrarily small, we can find a convergent subsequence such
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that

sup
bi∈[bj ,bj ]∪{Q}

V m
i (bi, vi; g

m
−i(·))

≤ lim inf
k→∞

V m
i (gmnk

i (vi), vi; g
mnk
−i (·))

≤ lim
l→∞

V m
i (gmnl

i (vi), vi; g
mnl
−i (·))

= (1− 1

m
)

∑
γ−i∈

∏
j ̸=i

{gmj ,U [bj ,bj ],δ{Q}}

P(γ−i)E[(vi − gmi (vi))η
γ
i (v)|vi] +Rm

i (vi, g
m
−i), (7)

where ηγi is the limit corresponding to the sequence {p̂wi (g
mnl
i (vi), γ

nl
−i)}∞l=1.The first

inequality follows by Inequalities (2) and (5), and the first equation follows by Equation (6)
with k tends to infinity.

Consider any vi such that gmi (vi) > Q. Define the set Ŵi = {v−i | gmi (vi) ≥
maxj ̸=i g

m
j (vj)} as the set of type profiles v−i for which bidder i’s bid gmi (vi) is among

the highest bids relative to the bids of the other bidders, as specified by the strategy profile
gm−i(·). We define E(· | vi, Ŵi) = 0 if P(Ŵi | vi) = 0. When P(Ŵi | vi) > 0, we compute the
expectation conditional on this event. Then we have

0 ≤E[(vi − gmi (vi))ηi(v)|vi]
= P(Ŵi|vi)E[(vi − gmi (vi))ηi(v)|vi, Ŵi]

≤ P(Ŵi|vi)E[vi − gmi (vi)|vi, Ŵi]E[ηi(v)|vi, Ŵi]

≤ P(Ŵi|vi)E[vi − gmi (vi)|vi, Ŵi]

= lim
ϵ→0+

Vi(g
m
i (vi) + ϵ, vi; g

m
−i(·)). (8)

The first inequality is due to the fact that vi−gmi (vi) ≥ 0. The second inequality follows by
Milgrom and Weber (1982, Theorem 23). The third inequality holds because 0 ≤ E[ηi(v) |
vi, Ŵi] ≤ 1 and P(Ŵi | vi)E[vi − gmi (vi) | vi, Ŵi] ≥ 0. The final equality results from two
observations: (i) for all ϵ > 0 and v−i ∈ Ŵi, we have pwi (g

m
i (vi) + ϵ, gm−i(v−i)) = 1; and (ii)

for all v−i /∈ Ŵi, as ϵ→ 0, pwi (g
m
i (vi) + ϵ, gm−i(v−i)) → 0.

Given a strategy profile γ−i ∈
∏

j ̸=i{gmj , δ{Q}, U [bj , bj ]}. Let I1 = {j : γj = U [bj , bj ]},
which consists of bidders employing a uniform distribution strategy over their action sets.
Define I2 = {j : γj = δ{Q}}, which includes bidders with a degenerate strategy, placing
all probability mass on Q. Let I3 = I\(I1 ∪ I2 ∪ {i}), which contains the remaining
bidders. For all nk, we define γnk

j = gmnk
j if γj = gmj , and γnk

j = γj otherwise. Let

Ŵ γ
i = {v−i|gmi (vi) ≥ maxj∈I3 g

m
j (vj)} be the set of types such that bidder i might win the

auction. We define E(·|vi, Ŵ γ
i ) = 0 if P(Ŵ γ

i |vi) = 0. Then, for P(Ŵ γ
i |vi) > 0, we have

0 ≤E[(vi − gmi (vi))η
γ
i (v)|vi]

= P(Ŵ γ
i |vi)E[(vi − gmi (vi))η

γ
i (v)|vi, Ŵ

γ
i ]

≤ P(Ŵ γ
i |vi)E[vi − gmi (vi)|vi, Ŵ γ

i ]E[η
γ
i (v)|vi, Ŵ

γ
i ]

≤ P(Ŵ γ
i |vi)E[vi − gmi (vi)|vi, Ŵ γ

i ]ζ
γ(vi)

= lim
ϵ→0+

Vi(g
m
i (vi) + ϵ, vi; γ−i(·)), (9)
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where ζγ(vi) =
∏

j∈I1 max{0,min{1, g
m
i (vi)−bj
bj−bj

}}, and the second inequality follows by

Milgrom and Weber (1982, Thoerem 23). Hence, by Lebesgue dominated convergence
theorem, we can obtain that

lim
l→∞

V m
i (gmnl

i (vi), vi; g
mnl
−i (·))

≤ lim
ϵ→0+

V m
i (gmi (vi) + ϵ, vi; g

m
−i(·))

≤ sup
bi∈[bi,bi]∪{Q}

V m
i (bi, vi; g

m
−i(·)), (10)

where the first inequality follows by Inequalities (7), (8) and (9).
Lastly, we show that the probability of the set of types in which at least two players

submit the highest bid above Q is zero. Combining Inequalities (7) and (10), we conclude
that all inequalities in Inequalities (7) – (10) must hold as equations. In particular, if
P(Ŵi | vi) > 0, then we have

0 ≤ E[vi − gmi (vi)|vi, Ŵi]E[ηi(v)|vi, Ŵi] = E[vi − gmi (vi)|vi, Ŵi]. (11)

We know that vi−gmi (vi) ≥ 0 by Claim 5. Next, we are going to show that vi−gmi (vi) > 0.

Claim 6. For almost all vi such that P(Ŵi | vi) > 0, we have vi − gmi (vi) > 0.

Proof. This statement is clearly true if gmi (vi) ≤ 0. We now consider the case where
gmi (vi) > 0. By the definition of a monotone strategy, we know that bidder i satisfies
gmi (ṽi) ≤ gmi (vi) for all ṽi ∈ [0, vi]. Since P(Ŵi | vi) > 0, there exists v̂j > 0 such that
gmj (ṽj) ≤ gmi (vi) for all ṽj ∈ [0, v̂j ] and for each bidder j ̸= i.

Suppose there exists j′ ̸= i such that gmj′ (ṽj′) = gmi (vi) > 0 for almost all ṽj′ ∈ [0, v̂j′ ].
Since gmj′ (vj′) ≤ vj′ for almost all vj′ ∈ [0, 1], it is impossible for bidder j′ to satisfy
gmj′ (ṽj′) = gmi (vi) > 0 for ṽj′ ∈ [0,min{v̂j′ , gmi (vi)}]. Thus, for each j ̸= i, we have
gmj (ṽj) < gmi (vi) on a nonnegligible subset of [0, v̂j ]. Therefore, for each bidder j ̸= i,
there exists b∗j < gmi (vi) and 0 < v̇j < v̂j such that gmj (ṽj) < b∗j for all ṽj ∈ [0, v̇j ]. Let

ḃ = maxj ̸=i b
∗
j < gmi (vi). Next, we classify gmi (vi) into the following two cases.

Case 1: Let gmi (vi) be a mass point of bidder i with the strategy profile gmi . It means
that there exists ϵ∗ > 0 such that (1) gmi (ṽi) ≡ gmi (vi) for all ṽi ∈ [vi − ϵ∗, vi]; or (2)
gmi (ṽi) < gmi (vi) for all ṽi < vi and g

m
i (ṽi) ≡ gmi (vi) for all ṽi ∈ [vi, vi + ϵ∗] . Since for each

ṽi ∈ [vi − ϵ∗, vi + ϵ∗], we have ṽi ≥ gmi (ṽi). Thus, if g
m
i (ṽi) ≡ gmi (vi) for all ṽi ∈ [vi − ϵ∗, vi],

then we have vi > vi− ϵ∗ ≥ gmi (vi− ϵ∗) = gmi (vi). In other words, suppose gmi (vi) is a mass
point of gmi (·), except that vi = argminṽi∈[0,1]{ṽi|g

m
i (ṽi) = gmi (vi)} (that is, gmi (ṽi) < gmi (vi)

for all ṽi < vi), we should have vi > gmi (vi). Note that gmi has at most countably many
mass points, and hence there exist at most countably many valuations vi such that gmi (vi)
is a mass point and vi = argminṽi∈[0,1]{ṽi|g

m
i (ṽi) = gmi (vi)}. Since λi is atomless, we know

that any countable set has measure zero.
Case 2: Suppose gmi (vi) is not a mass point of bidder i, which implies that gm(·)

is continuous at vi. By the continuity property, there exists v′i < vi such that gmi (v′i) ∈
[ḃ, gmi (vi)) and g

m
i (v′i) is not a mass point of gm(·). This is achievable due to the continuity

property and the fact that gm has at most countably many mass points.
Let Ŵ ′

i = {v−i|maxj ̸=i g
m
j (vj) ≤ gmi (v′i)}. Then, we have P(Ŵ ′

i |v′i) > 0. We can find a
sequence of bids {bnl

i }∞l=1 such that bnl
i is the greatest bid in the set Anl

i with bnl
i ≤ gmi (v′i).
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Since ∪∞
k=1A

k
i is dense in [bi, bi] ∪ {Q}, we deduce that bnl

i → gmi (v′i). Since g
m
i (v′i) is not a

mass point of gm(·), we have

Vi(b
nl
i , vi, g

mnl
−i (·))

= E[(vi − bnl
i )pwi (b

nl
i , g

mnl
−i (·))|vi, {v−i|max

j ̸=i
gmnl
j (vj) ≤ bnl

i }]P({v−i|max
j ̸=i

gmnl
j (vj) ≤ bnl

i }|vi)

= E[vi − bnl
i |vi, {v−i|max

j ̸=i
gmnl
j (vj) < bnl

i }]P({v−i|max
j ̸=i

gmnl
j (vj) < bnl

i }|vi)

→ E[vi − gmi (v′i)|vi, {v−i|max
j ̸=i

gmj (vj) < gmi (v′i)}]P({v−i|max
j ̸=i

gmj (vj) ≤ gmi (v′i)}|vi)

where the second equation holds since Anl
j ∩Anl

i = {Q} for i ̸= j. Note that bnl
i converges

to gmi (v′i) (resp. gm−i(·)), and g
mnl
−i (·) converges pointwise to gm−i(·) for almost all v−i. For

simplicity, we consider gmnl
−i (·) converges pointwise to gm−i(·) for all v−i. Then we have

{v−i|max
j ̸=i

gmj (vj) < gmi (v′i)} ⊆ lim inf
l→∞

{v−i|max
j ̸=i

gmnl
j (vj) ≤ bnl

i },

lim sup
l→∞

{v−i|max
j ̸=i

gmnl
j (vj) ≤ bnl

i } ⊆ {v−i|max
j ̸=i

gmj (vj) ≤ gmi (v′i)}.

Since gmi (v′i) is not a mass point of gm, we have

P({v−i|max
j ̸=i

gmj (vj) ≤ gmi (v′i)}|vi)

= P({v−i|max
j ̸=i

gmj (vj) < gmi (v′i)}|vi)

= lim
l→∞

P({v−i|max
j ̸=i

gmj (vj) < bnl
i }|vi).

Recall that {nl}∞l=1 is a subsequence of {nk}∞k=1. Since g
mnl is a monotone equilibrium

of Gmnl , we have

Vi(g
mnl
i (vi), g

mnl
−i (·))

= E[(vi − gmnl
i (vi))p

w
i (g

mnl(·))|vi, {v−i|max
j ̸=i

gmnl
j (vj) ≤ gmnl

i (vi)}]

· P({v−i|max
j ̸=i

gmnl
j (vj) ≤ gmnl

i (vi)}|vi)

≥ E[(vi − bnl
i )pwi (b

nl
i , g

mnl
−i (·))|vi, {v−i|max

j ̸=i
gmnl
j (vj) ≤ bnl

i }]P({v−i|max
j ̸=i

gmnl
j (vj) ≤ bnl

i }|vi)

= Vi(b
nl
i , g

mnl
−i (·)).

The set of vi such that gmi (vi) is a mass point of gm−i but not a mass point of gmi consists
of at most countably many points. Consequently, the measure of this set is zero, allowing
us to disregard it. Let l tends to ∞, we consider vi such that gmi (vi) is not a mass point
of gm, then we have E[vi − gmi (vi)|vi, Ŵi]P(Ŵi|vi) ≥ E[vi − gmi (v′i)|vi, {v−i|max

j ̸=i
gmj (vj) <

gmi (v′i)}]P({v−i|max
j ̸=i

gmj (vj) ≤ gmi (v′i)}|vi). Since v′i − gmi (v′i) ≥ 0, we have vi − gmi (v′i) > 0.

And hence, vi − gmi (vi) > 0.

In summary, we observe that the inequality in Inequality (11) holds strictly. Therefore,
we have E[ηi(v)|vi, Ŵi] = 1 for almost all vi such that P(Ŵi|vi) > 0. Consequently, given a
nonempty subset B ⊆ {1, 2, . . . , n} and letting TB = {v : gmi (vi) = maxj g

m
j (vj) > Q, ∀i ∈
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B}, if P(TB) > 0, then for every i ∈ B, we have ηi(v) = 1 for almost all v ∈ TB. However,
since

∑n
i=1 ηi(v) ≤ 1 for almost all v ∈ [0, 1]n, it implies that #|B| = 1. Therefore, the

probability that under gm, two or more bidders simultaneously submit the highest bid above
Q is zero. Thus, for every i and almost all vi, V

m
i (·, vi; ·) is continuous at (gmi (vi), g

m
−i(v−i)).

Consequently, liml→∞ V m
i (gmnl

i (vi), vi; g
mnl
−i (·)) = V m

i (gmi (vi), vi; g
m
−i(·)) for almost all vi.

This implies that V m
i (gmi (vi), vi; g

m
−i(·)) = supbi∈[bi,bi]∪{Q} V

m
i (bi, vi; g

m
−i(·)) for almost all

vi. Therefore, g
m is a monotone equilibrium.

Step 4. By Helly’s selection theorem, there exists a subsequence {gmk}∞k=1 of {gm}∞m=1

that converges to g for almost all v. Since gmi (vi) ≤ vi for all vi ∈ [0, 1], all i ∈ I, and all
m ∈ N, it follows that gi(vi) ≤ vi for almost all vi ∈ [0, 1] and for all i ∈ I. In this step, we
will demonstrate that g is a perfect monotone equilibrium.

By the limit property, we have limk→∞ ρ(gmk
i (vi), gi(vi)) = 0 for all i and for almost

all vi. Let gmk
j = (1 − 1

mk
)gmk

j + 1
2mk

U [bj , bj ] +
1

2mk
δ{Q}, for all j. Since gmk is an

equilibrium in Gmk , we know that V mk
i (bi, vi; g

mk
−i (·)) ≤ V mk

i (gmk
i (vi), vi; g

mk
−i (·)) for all

bi ∈ [bi, bi] ∪ {Q}, which equivalents to Vi(bi, vi; g
mk
−i (·)) ≤ Vi(g

mk
i (vi), vi; g

mk
−i (·)) for all

bi ∈ [bi, bi] ∪ {Q} and all i. Thus, gmk
i (vi) ∈ BRi(vi, g

mk
−i (vi)) for almost all vi. And hence,

the completely mixed strategy g̃mk in G satisfies limmk→∞ ρ(gmk
i (vi),BRi(vi, g

mk
−i (vi))) ≤

limk→∞ ρ(gmk
i (ti), g

mk
i (ti)) = 0. To show g is a perfect monotone equilibrium, it remains

to show that g is an equilibrium. Thus, we only need to show that the probability of two
or more players simultaneously submitting the highest bid above Q under g is 0. This can
be derived using similar arguments as in Step 3. We outline the main idea below.

Notice that we can obtain the following inequality (modified from Inequality (5)):

lim
b′i→b+i

Vi(b
′
i, vi; g−i(·)) ≤ Vi(bi, vi; g−i(·)) + ϵ

≤ Vi(bi, vi; g
mk
−i (·)) + 2ϵ for k ≥ K

≤ Vi(g
mk
i (vi), vi; g

mk
−i (·)) + 3ϵ for k ≥ K,

where the first and second inequalities of the following align holds for some bi that
sufficiently close to bi, and bi is not a mass of g and gm for all m. The last
inequality holds because gmk is an equilibrium of Gmk , meaning that V mk

i (bi, vi; g
mk
−i (·)) ≤

V mk
i (gmk

i (vi), vi; g
mk
−i (·)). When k is sufficiently large, we obtain Vi(bi, vi; g

mk
−i (·)) ≤

Vi(g
mk
i (vi), vi; g

mk
−i (·)) + ϵ. Thus, combining the above two inequalities, we have

sup
bi∈[bi,bi]∪{Q}

Vi(bi, vi; g(·)) ≤ lim inf
k→∞

Vi(g
mk
i (vi), vi; g

mk
−i (·)).

Notice that Vi(g
mk
i (vi), vi; g

mk
−i (·)) = E[(vi−gmk

i (vi))p
w
i (g

mk) | vi]P({v−i | maxj ̸=i g
mk
j (vj) ≤

gmk
i (vi)} | vi). By the monotonicity property and Helly’s selection theorem, we obtain a
subsequence {ml}∞l=1 of {mk}∞k=1 such that

E[(vi − gml
i (vi))p

w
i (g

ml) | vi] → E[(vi − gi(vi))η
∗
i | vi]

by the dominated convergence theorem, where η∗i : [0, 1]
n → [0, 1].

By the same arguments as the proof of Inequality (8), we can show that

lim
l→∞

Vi(g
ml
i (vi), vi; g

ml
−i ) ≤ sup

bi∈[bi,bi]∪{Q}
Vi(bi, vi; g(·)).
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Last but not least, we repeat the proof of Claim 6. Consequently, we conclude that the
probability of two or more players simultaneously submitting the highest bid above Q
under g is zero. Then, we have liml→∞ Vi(g

ml
i (vi), vi; g

ml
−i ) = Vi(gi(vi), vi; g−i). Combined

with liml→∞ Vi(g
ml
i (vi), vi; g

ml
−i ) = supbi∈[bi,bi]∪{Q} Vi(bi, vi; g(·)), we conclude that g is a

monotone equilibrium, which completes our proof.

8.3 Proof of Proposition 2

The approach used in this proof is analogous to the method employed in the proof of
Theorem 1. For simplicity, we assume that the winning payoff function wi(a, t) is uniformly
bounded by a constant M for all players i = 1, 2, . . . , n. This implies that |wi(a, t)| ≤
M, ∀i ∈ {1, 2, . . . , n}, a ∈ A, t ∈ T.

Step 1. In this step, we construct a sequence of Bayesian games {Gmk}∞k=1 that converges
to the limit Bayesian game Gm. Each game Gmk possesses a monotone equilibrium gmk.
Note that the game Gmk and Gm are constructed in the same manner as in Step 1 of
the proof of Theorem 1. We shall demonstrate that bidder i’s interim payoff function V m

i

satisfies IDC(vi, bi) for any monotone strategy β−i ∈ F−i. By applying Theorem 1, it
follows that each game Gmk possesses a monotone equilibrium.

Next, we are going to show for each bidder i ∈ I, V m
i (bi, ti;β−i(·)) satisfies IDC(bi, ti)

for any monotone strategy β−i ∈ F−i. For any b
H
i , b

L
i > Q ∈ Ak

i and bHi > bLi ,

V m
i (bHi , ti;β−i(·))− V m

i (bLi , ti;β−i(·))

= (1− 1

m
)[Vi(b

H
i , ti;β

m
−i(·))− Vi(b

L
i , ti;β

m
−i(·))]

= (1− 1

m
)

∑
γ−i∈

∏
j ̸=i

{βj ,U [bj ,bj ],δ{Q}}

P(γ−i)[Vi(b
H
i , ti; γ−i(·))− Vi(b

L
i , ti; γ−i(·))],

where P(γ−i) =
∏

j ̸=i pj(γj) and P(γj) = (1 − 1
m)δβj

(γj) +
1
2mδU [bj ,bj ]

(γj) +
1
2mδδ{Q}(γj).

Given a strategy profile γ−i ∈
∏

j ̸=i{βj , U [bj , bj ], δ{Q}}, we divide the players into three

subsets. Let I1 = {j : γj = U [bj , bj ]}, which consists of bidders employing a uniform
distribution strategy over their action sets. Define I2 = {j : γj = δ{Q}}, which includes
bidders with a degenerate strategy, placing all probability mass on Q. Let I3 = I\(I1∪ I2∪
{i}), which contains the remaining bidders. Then, by simple algebra, we obtain

Vi(b
H
i , ti; γ−i(·))− Vi(b

L
i , ti; γ−i(·))

=

∫
T−i

[ui(b
H
i , ti; γ−i(t−i))− ui(b

L
i , ti; γ−i(t−i))]f(t−i|ti) dt−i

=
∏
j∈I1

1

bj − bj

∫
T−i

∫
∏

j∈I1

[bj ,bj ]
[ui(b

H
i , ti; bI1 , QI2 , βI3)− ui(b

L
i , ti; bI1 , QI2 , βI3)] ⊗

j∈I1
dbjf(t−i|ti) dt−i

=
∏
j∈I1

1

bj − bj

∫
∏

j∈I1

[bj ,bj ]

∫
T−i

[ui(b
H
i , ti; bI1 , QI2 , βI3)− ui(b

L
i , ti; bI1 , QI2 , βI3)]f(t−i|ti) dt−i ⊗

j∈I1
dbj

=
∏
j∈I1

1

bj − bj

∫
∏

j∈I1

[bj ,bj ]
[Vi(b

H
i , ti; δbI1 , δQI2

, βI3)− Vi(b
L
i , ti; δbI1 , δQI2

, βI3)] ⊗
j∈I1

dbj ,
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where bI1 = (bj)j∈I1 , QI2 = (Q, . . . , Q) with dim(QI2) = #|I2|, βI3 = (βj)j∈I3 , δbI1 =
(δ{bj})j∈I1 , and δQI2

= (δ{Q})j∈I2 . Let pwi (bi, b−i) represent the winning probability for
bidder i when choosing action bi, while other bidders choose actions b−i, and define
pwi (Q, b−i) = 0 for all b−i ∈ T−i. By straightforward algebraic manipulation, for any
monotone strategy ψ(·), we have

Vi(b
H
i , ti;ψ−i(·))− Vi(b

L
i , ti;ψ−i(·))

=

∫
T−i

wi(b
H
i , ti, t−i)p

w
i (b

H
i , ψ−i(t−i))− wi(b

L
i , ti, t−i)p

w
i (b

L
i , ψ−i(t−i))f(t−i|ti) dt−i

− (bHi − bLi )

=

∫
T−i

wi(b
H
i , ti, t−i)(p

w
i (b

H
i , ψ−i(t−i))− pwi (b

L
i , ψ−i(t−i)))f(t−i|ti) dt−i

+

∫
T−i

(wi(b
H
i , ti, t−i)− wi(b

L
i , ti, t−i))p

w
i (b

L
i , ψ−i(t−i))f(t−i|ti) dt−i

− (bHi − bLi ).

Since wi(b
H
i , ti, t−i)−wi(b

L
i , ti, t−i) is increasing in ti and wi(bi, ti, t−i) is strictly increasing

in ti, it follows that for each bidder i ∈ I, the interim payoff function V m
i (bi, ti;β−i(·))

satisfies IDC(bi, ti) for all β−i ∈ F−i. Furthermore, if bLi = Q, then V m
i (bHi , ti; γ−i(·)) −

V m
i (Q, ti; γ−i(·)) =

(
1− 1

m

)∑
γ−i∈

∏
j ̸=i

{βj ,U [bj ,bj ],δ{Q}} P(γ−i)Vi(b
H
i , ti; γ−i(·)) is increasing in

ti. By Theorem 1, there exists a monotone equilibrium in each game Gmk, denoted by gmk.

Step 2. By Helly’s selection theorem, there exists a subsequence {gmnk}∞k=1 of {gmk}∞k=1

such that {gmnk}∞k=1 converges pointwise to a measurable monotone strategy gm for almost
all v ∈ [0, 1]n. Thus, we have lim

k→∞
ρ(gmnk

i (vi, ·), gmi (vi, ·)) = 0, for each bidder i, for λi

almost all vi.

Step 3. In this step, we demonstrate that for each m ∈ N, gm is a monotone equilibrium
in Gm, and that there exists a subsequence of {gm}∞m=1 which converges to a monotone
strategy g. Throughout the remainder of the proof, we assume that (i) ui(Q, t) = 0 for all
i and t; and (ii) Q is an isolated point, so that b′i → Q implies b′i = Q.

Let pwi (bi, b−i) denote the probability that bidder i wins when the bid vector is (bi, b−i).
Define Wi = {t−i | maxj ̸=i g

m
j (tj) ≤ bi} as the set of types (a subset of T−i) for which

bidder i’s bid bi is the highest against the strategy profile gm−i(·), where gm(·) is a monotone
strategy profile. We define E(· | ti,Wi) = 0 if P(Wi | ti) = 0. Then, we have the following:

Vi(bi, ti; g
m
−i(·)) = P(Wi|ti)E[wi(bi, t)p

w
i (bi, g

m
−i(t−i))|ti,Wi]− bi

≤ P(Wi|ti)E[wi(bi, t)|ti,Wi]E[pwi (bi, gm−i(t−i))|ti,Wi]− bi

≤ P(Wi|ti)E[wi(bi, t)|ti,Wi]− bi

≤ lim
b′i→b+i

Vi(b
′
i, ti; g

m
−i), (12)

where the first inequality follows from Milgrom and Weber (1982, Theorem 23), since both
wi(bi, ti, t−i) and 1 − pwi (bi, g

m
−i(t−i)) are increasing in t−i. The second inequality holds

because 0 ≤ E[pwi (bi, gm−i(t−i)) | ti,Wi] ≤ 1 and P(Wi | ti)E[wi(bi, t) | ti,Wi] ≥ 0. The last
equation is valid since (i) pwi (b

′
i, g

m
−i(t−i)) = 1 for all b′i > bi and t−i ∈ Wi; and (ii) for all
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t−i /∈Wi, p
w
i (b

′
i, g

m
−i(t−i)) → 0 as b′i > bi and b

′
i → bi.

Notably, Inequality (12) also holds for any other monotone strategy profile ψ(·).
Specifically, we have

Vi(bi, ti;ψ−i(·)) ≤ lim
b′i→b+i

Vi(b
′
i, ti;ψ−i(·)) (13)

Let P(γ−i) =
∏

j ̸=i P(γj) and P(γj) = (1 − 1
m)δgmj (γj) +

1
2mδU [bj ,bj ]

(γj) +
1
2mδδ{Q}(γj). We

have

V m
i (bi, ti; g

m
−i(·)) =

∑
γ−i∈

∏
j ̸=i

{gmj ,U [bj ,bj ],δ{Q}}

P(γ−i)Vi(b
m
i , ti; γ−i(·))

= (1− 1

m
)

∑
γ−i∈

∏
j ̸=i

{gmj ,U [bj ,bj ],δ{Q}}

P(γ−i)Vi(bi, ti; γ−i(·))

+
1

2m
· 1

bi − bi

∑
γ−i∈

∏
j ̸=i

{gmj ,U [bj ,bj ],δ{Q}}

P(γ−i)

∫
[bi,bi]

Vi(b̃i, ti; γ−i(·)) db̃i

+ 0 (14)

Given a strategy profile γ−i ∈
∏

j ̸=i{gmj , U [bj , bj ], δ{Q}}, we divide the players into three

subsets. Let I1 = {j : γj = U [bj , bj ]}, which consists of bidders employing a uniform
distribution strategy over their action sets. Define I2 = {j : γj = δ{Q}}, which includes
bidders with a degenerate strategy, placing all probability mass on Q. Let I3 = I\(I1∪ I2∪
{i}), which contains the remaining bidders. Then, by simple algebra, we obtain

Vi(bi, ti; γ−i(·)) =
∫
T−i

ui(bi, ti; γ−i(t−i))f(t−i|ti) dt−i

=
∏
j∈I1

1

bj − bj

∫
T−i

∫
∏

j∈I1

[bj ,bj ]
ui(bi, ti; bI1 , QI2 , g

m
I3) ⊗

j∈I1
dbjf(t−i|ti) dt−i

=
∏
j∈I1

1

bj − bj

∫
∏

j∈I1

[bj ,bj ]

∫
T−i

ui(bi, ti; bI1 , QI2 , g
m
I3)f(t−i|ti) dt−i ⊗

j∈I1
dbj

=
∏
j∈I1

1

bj − bj

∫
∏

j∈I1

[bj ,bj ]
Vi(bi, ti; δbI1 , δQI2

, gmI3) ⊗
j∈I1

dbj ,

where bI1 = (bj)j∈I1 , QI2 = (Q, . . . , Q) with dim(QI2) = #|I2|, δbI1 = (δ{bj})j∈I1 ,
δQI2

= (δ{Q})j∈I2 , and gmI3 = (gmj )j∈I3 . Since Vi is bounded, by the Lebesgue dominated
convergence theorem and Inequality (13), we have

Vi(bi, ti; γ−i) ≤ lim
b′i→b+i

Vi(b
′
i, ti; γ−i). (15)

Combining Equation (14) and Inequality (15), we obtain

V m
i (bi, ti; g

m
−i(·)) ≤ lim

b′i→b+i

V m
i (b′i, ti; g

m
−i(·)). (16)
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For each bidder j, because his strategy gmj (tj) has at most countably many mass points

and Ak
j becomes dense in [bj , bj ] ∪ {Q}, thus, for every bi ∈ [bi, bi] ∪ {Q}, every ϵ > 0, and

λi almost all ti, there exists K ∈ N, and bi ∈ AK
i such that

lim
b′i→b+i

V m
i (b′i, ti; g

m
−i) ≤ V m

i (bi, ti; g
m
−i) + ϵ

≤ V m
i (bi, ti; g

mnk
−i ) + 2ϵ for k ≥ K,

≤ V m
i (gmnk

i (ti), ti; g
mnk
−i ) + 2ϵ for k ≥ K, (17)

where the first and second lines follow because bi can be chosen such that the probability
of any gmj (tj) equaling bi is arbitrarily small. The third line follows because bi ∈ AK

i is
a feasible action in Gmnk for player i for every k ≥ K, and gmnk is an equilibrium in the
game Gmnk .

Since Vi(g
mnk
i (ti), ti; g

mnk
−i ) = E[wi(g

mnk
i (ti), t−i)p

w
i (g

mnk
i (ti), g

mnk
−i (t−i)) | ti]− gmnk

i (ti),
and since the probability that bidder i wins, pwi (bi, b−i), is increasing in bi and decreasing
in b−i, each function pwi (g

mnk(t)) in the sequence is monotone in each of its arguments
t1, . . . , tn: increasing in ti and decreasing in t−i. By Helly’s selection theorem, extracting
a subsequence if necessary, there exists a function ηi : [0, 1]

n → [0, 1] such that,
for almost all t ∈ [0, 1]n, E[wi(g

mnk
i (ti), t−i)p

w
i (g

mnk
i (ti), g

mnk
−i (t−i)) | ti] converges to

E[wi(g
m
i (ti), t−i)ηi(t) | ti], by the dominated convergence theorem. Since the bidders’ finite

action sets are pairwise disjoint, we have pwi (g
mnk(t)) ∈ {0, 1} for all nk and t. Therefore,

it follows that ηi(t) ∈ {0, 1} for almost all t. One can interpret ηi(·) as a tie-breaking rule
in the limit, with

∑n
i=1 ηi ≤ 1 for almost all t.

Repeating the computation above, let P(γnk
−i ) =

∏
j ̸=i P(γ

nk
j ), where P(γnk

j ) =(
1− 1

m

)
δgmnk

j
(γnk

j ) + 1
2mδU [0,1](γ

nk
j ) + 1

2mδδ{Q}(γ
nk
j ). We obtain the following:

V m
i (bi, ti; g

mnk
−i (·)) =

∑
γ
nk
−i ∈

∏
j ̸=i

{gmnk
j ,U [0,1],δ{Q}}

P(γnk
−i )Vi(b

m
i , ti; γ

nk
−i (·))

= (1− 1

m
)

∑
γ
nk
−i ∈

∏
j ̸=i

{gmnk
j ,U [0,1],δ{Q}}

P(γnk
−i )Vi(bi, ti; γ

nk
−i (·))

+
1

2m
· 1

bi − bi

∑
γ−i∈

∏
j ̸=i

{gmnk
j ,U [bj ,bj ],δ{Q}}

P(γnk
−i )

∫
[bi,bi]

Vi(b̃i, ti; γ
nk
−i (·)) db̃i

+ 0 (18)

Given a strategy profile γnk
−i ∈

∏
j ̸=i{g

mnk
j , U [bj , bj ], δ{Q}}, we divide the players into

three subsets. Let Ink
1 = {j : γnk

j = U [bj , bj ]}, which consists of bidders employing a
uniform distribution strategy over their action sets. Define Ink

2 = {j : γnk
j = δ{Q}}, which

includes bidders with a degenerate strategy, placing all probability mass on Q. Let Ink
3 =

I\(Ink
1 ∪ Ink

2 ∪ {i}), which contains the remaining bidders. Then, by simple algebra, we
obtain

Vi(bi, ti; γ
nk
−i (·)) (19)

=

∫
T−i

ui(bi, ti; γ
nk
−i (t−i))f(t−i|ti) dt−i
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=
∏

j∈Ink
1

1

bj − bj

∫
T−i

∫
∏

j∈I
nk
1

[bj ,bj ]
ui(bi, ti; bInk

1
, QI

nk
2
, gmnk

I
nk
3

) ⊗
j∈Ink

1

dbjf(t−i|ti) dt−i

=
∏

j∈Ink
1

1

bj − bj

∫
T−i

∫
∏

j∈I
nk
1

[bj ,bj ]
wi(bi, ti, t−i)p

w
i (bi, bInk

1
, QI

nk
2
, gmnk

I
nk
3

) ⊗
j∈Ink

1

dbjf(t−i|ti) dt−i

− bi

=

∫
T−i

wi(bi, ti, t−i)
∏

j∈Ink
1

1

bj − bj
(

∫
∏

j∈I
nk
1

[bj ,bj ]
pwi (bi, bInk

1
, QI

nk
2
, gmnk

I
nk
3

) ⊗
j∈Ink

1

dbj)f(t−i|ti) dt−i

− bi, (20)

where bInk
1

= (bj){j∈Ink
1 }, QI

nk
2

= (Q, · · · , Q), with dim(QI
nk
2
) = #|Ink

2 |, δb
I
mnk
1

=

(δ{bj})j∈Ink
1
, δQ

I
mnk
2

= (δ{Q})j∈Ink
2
, and gmnk

I
nk
3

= (gmnk
j ){j∈Ink

3 }.

Denote pwi (bi, γ
nk
−i ) =

∏
j∈Ink

1

1
bj−bj

∫∏
j∈I

nk
1

[bj ,bj ]
pwi (bi, bInk

1
, QI

nk
2
, gmnk

I
nk
3

(tInk
3
))⊗j∈Ink

1
daj .

Since pwi (·) is decreasing in b−i, we know that pwi (bi, γ
nk
−i ) is decreasing in t−i, and combine

with Equation (19), we have

Vi(bi, ti; γ
nk
−i (·)) =

∫
T−i

wi(bi, ti, t−i)p
w
i (bi, γ

nk
−i )f(t−i|ti) dt−i − bi.

Similarly, we have {pwi (g
mnk
i (ti), γ

nk
−i )}∞k=1 (extracting a subsequence if necessary), and a

function ηγi : [0, 1]
n → [0, 1] such that for almost all t ∈ [0, 1]n,

E[wi(g
mnk
i (ti), t−i)p

w
i (g

mnk
i (ti), γ

mnk
−i (t−i))|ti] → E[wi(g

m
i (ti), t−i)η

γ
i (t)|ti]

by the dominated convergence theorem.
DenoteRm

i (ti, g
mnk
−i ) = 1

2m · 1
bi−bi

∑
γ
nk
−i ∈

∏
j ̸=i{g

mnk
j ,U [bi,bi],δ{Q}} P(γ

nk
−i )

∫
[bi,bi]

Vi(b̃i, ti; γ
nk
−i (·)) db̃i.

Define γj = gmj if γnk
j = gmnk

j for all k ∈ Z+, and let γj = γnk
j if γnk

j = U [bi, bi] for all
k ∈ Z+ or γnk

j = δ{Q} for all k ∈ Z+. Since the mass points of γ−i and {γnk
−i}k∈N are at

most countable, it follows that Rm
i (ti, g

mnk
−i ) converges to Rm

i (ti, g
m
−i), where

Rm
i (ti, g

m
−i) =

1

2m
· 1

bi − bi

∑
γ−i∈

∏
j ̸=i{gmj ,U [bi,bi],δ{Q}}

P(γ−i)

∫
[bi,bi]

Vi(b̃i, ti; γ−i(·)) db̃i.

Since the set
∏

j ̸=i{gmj , U [bj , bj ], δ{Q}} is finite, and ϵ > 0 is arbitrarily small, we have

sup
bi∈[bi,bi]∪{Q}

V m
i (bi, ti; g

m
−i(·))

≤ lim inf
k→∞

V m
i (gmnk

i (ti), ti; g
mnk
−i (·))

= lim
l→∞

V m
i (gmnl

i (ti), ti; g
mnl
−i (·))

= (1− 1

m
)

∑
γ−i∈

∏
j ̸=i

{gmj ,U [0,1],δ{Q}}

P(γ−i)(E[wi(g
m
i (ti), t−i)η

γ
i (t)|ti]− gmi (ti)) +Rm

i (ti, g
m
−i),

(21)
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where ηγi is the limit corresponding to the sequence {pwi (g
mnl
i (ti), γ

nl
−i)}∞l=1. The first

inequality follows from Inequalities (16) and (17). The first equation is obtained by
selecting an appropriate subsequence of convergence, and the last equation follows from
Equation (18) as l → ∞.

Let Ŵi = {t−i|maxj ̸=i g
m
j (tj) ≤ gmi (ti)} be the set of types such that bidder i’s bid

gmi (ti) is the highest bid against gm(·). Define E(· | ti, Ŵi) = 0 if P(Ŵi | ti) = 0. Then we
have

E[wi(g
m
i (ti), t−i)ηi(t)|ti]− gmi (ti)

= P(Ŵi|ti)E[wi(g
m
i (ti), t−i)ηi(t)|ti, Ŵi]− gmi (ti)

≤ P(Ŵi|ti)E[wi(g
m
i (ti), t−i)|ti, Ŵi]E[ηi(t)|ti, Ŵi]− gmi (ti)

≤ P(Ŵi|ti)E[wi(g
m
i (ti), t−i)|ti, Ŵi]− gmi (ti)

= lim
ϵ→0+

Vi(g
m
i (ti) + ϵ, ti; g

m
−i(·)), (22)

where the first inequality follows from Milgrom and Weber (1982, Theorem 23), and the
second inequality follows from 0 ≤ E[ηi(t) | ti, Ŵi] ≤ 1 and P(Ŵi | ti)E[wi(g

m
i (ti), t−i) |

ti] ≥ 0.
Given a strategy profile γ−i ∈

∏
j ̸=i{gmj , U [bj , bj ], δ{Q}}. Let I1 = {j : γj = U [bj , bj ]},

which consists of bidders employing a uniform distribution strategy over their action sets.
Let Ŵ γ

i = {t−i | maxj∈I3 g
m
j (tj) ≤ gmi (ti)}. Define E(· | ti, Ŵ γ

i ) = 0 if P(Ŵ γ
i | ti) = 0.

Then we have

E[wi(g
m
i (ti), t−i)η

γ
i (t)|ti]− gmi (ti)

= P(Ŵ γ
i |ti)E[wi(g

m
i (ti), t−i)η

γ
i (t)|ti, Ŵ

γ
i ]− gmi (ti)

≤ P(Ŵ γ
i |ti)E[wi(g

m
i (ti), t−i)|ti, Ŵ γ

i ]E[η
γ
i (t)|ti, Ŵ

γ
i ]− gmi (ti)

≤ P(Ŵ γ
i |ti)E[wi(g

m
i (ti), t−i)|ti, Ŵ γ

i ]ζ
γ(ti)− gmi (ti)

= lim
ϵ→0+

Vi(ĝ
m
i (ti) + ϵ, ti; γ−i), (23)

where ζγ(ti) =
∏

j∈I1 max{0,min{1, g
m
i (ti)−bj
bj−bj

}}, the first inequality follows by Milgrom

and Weber (1982, Thoerem 23), and the second inequality follows by E[ηγi (t)|ti, Ŵ
γ
i ] ≤

ζγ(ti) and P(Ŵ γ
i |ti)E[wi(g

m
i (ti), t−i)|ti] ≥ 0. Hence, by Lebesgue dominated convergence

theorem, we can obtain that

lim
l→∞

V m
i (gmnl

i (ti), ti; g
mnl
−i )

≤ lim
ϵ→0+

V m
i (gmi (ti) + ϵ, ti; g

m
−i)

≤ sup
bi∈[bi,bi]∪{Q}

V m
i (bi, ti; g

m
−i), (24)

where the first inequality follows by Inequalities (21), (22) and (23).
Next, we show that the probability, under gm, that two or more bidders simultaneously

submit a highest bid above Q is 0. Combining Inequalities (21) and (24), we know that the
inequalities in Inequalities (21) – (24) must be equalities. In particular, if P(Ŵi|ti) > 0,
then

0 ≤ E[wi(g
m
i (ti), t−i)|ti, Ŵi]E[ηi(t)|ti, Ŵi] = E[wi(g

m
i (ti), t−i)|ti, Ŵi].
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Since wi(bi, t−i) > 0 for all bi > Q, and t−i ∈ [0, 1]n−1, and P(Ŵi|ti) > 0, this inequality
strictly holds. Hence, we conclude that E[ηi(t)|ti, Ŵi] = 1 for almost all ti such that
P(Ŵi|ti) > 0.

Consequently, given ∅ ≠ H ⊆ {1, 2, . . . , n} and letting TH = {t : gmi (ti) =
maxj g

m
j (tj) > Q,∀i ∈ H}, we consider the probability P(TH). If P(TH) > 0, then

for every i ∈ H, ηi(t) = 1 for almost all t ∈ TH . However, since
∑n

i=1 ηi(t) ≤ 1 for
almost all t ∈ T , we conclude that |H| = 1. Therefore, the probability that two or more
bidders simultaneously submit the highest bid above Q under gm is 0. Thus, for every
i and almost all ti, the function V m

i (·, ti; ·) is continuous at (gmi (ti), g
m
−i(t−i)). Therefore,

we have liml→∞ V m
i (gmnl

i (ti), ti; g
mnl
−i ) = V m

i (gmi (ti), ti; g
m
−i) for almost all ti. This implies

that V m
i (gmi (ti), ti; g

m
−i) = supbi∈[bi,bi]∪{Q} V

m
i (bi, ti; ĝ

m
−i) for almost all ti. Hence, g

m is a
monotone equilibrium.

Step 4. By Helly’s selection theorem, there exists a subsequence {gmk}∞k=1 of the sequence
{gm}∞m=1 that converges to a strategy profile g for almost all types t. In this step, we will
show that g is a perfect monotone equilibrium.

By the construction of g, we have:

lim
k→∞

ρ(gmi (ti), gi(ti)) = 0 for all i, almost all ti.

Let gmj = (1− 1
m)gmj + 1

2mU [0, 1] + 1
2mδ{Q} for all j. Since gm is an equilibrium in Gm,

for almost all ti, we have:

V m
i (bi, ti; g

m
−i) ≤ V m

i (gi(ti); g
m
−i) for all bi ∈ [bj , bj ] ∪ {Q},

which is equivalent to:

Vi(bi, ti; g
m
−i) ≤ Vi(gi(ti), ti; g

m
−i) for all bi ∈ [bi, bi] ∪ {Q}.

Thus, gmi (ti) ∈ BRi(ti, g
m
−i(ti)) for almost all ti. Hence, the completely mixed strategy gm

in G satisfies:

lim
m→∞

ρ
(
gm(ti),BRi(ti, g

m
−i(ti))

)
= lim

m→∞
ρ (gmi (ti), g

m
i (ti)) = 0.

To show that g is a perfect monotone equilibrium, we must show that g is an equilibrium.
Note that each gm is an equilibrium in Gm, and the game Gm converges to game G, and
gm converges to g. Thus, it remains to show that the probability of two or more players
simultaneously submitting the highest bid above Q under g is zero. This can be derived
using similar arguments to those in Step 3. We outline the key steps below.

From Inequality (13), we know that:

Vi(bi, ti; g(·)) ≤ lim
b′i→b+i

Vi(b
′
i, ti; g(·)).

We can obtain the following inequality (modified from Inequality (17)):

lim
b′i→b+i

Vi(b
′
i, ti; g−i) ≤ Vi(bi, ti; g−i) + ϵ

≤ Vi(bi, ti; g
mk
−i ) + 2ϵ for k ≥ K

≤ Vi(g
mk
i (ti), ti; g

mk
−i ) + 3ϵ for k ≥ K,
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where the first and second inequalities hold for some bi sufficiently close to bi, and bi is not
a mass point for g and gm for allm. The last inequality holds because gmk is an equilibrium
in Gmk , i.e., V m

i (bi, ti; g
mk
−i ) ≤ V m

i (gmk
i (ti), ti; g

mk
−i ). When k is sufficiently large, we can

obtain that:
Vi(bi, ti; g

mk
−i ) ≤ Vi(g

mk
i (ti), ti; g

mk
−i ) + ϵ.

Thus, combining the above inequalities, we get

sup
bi∈[bi,bi]∪{Q}

Vi(bi, ti; g(·)) ≤ lim
k→∞

Vi(g
mk
i (ti), ti; g

mk
−i ).

Notice that Vi(g
mk
i (ti), ti; g

mk
−i ) = E[ωi(g

mk
i , t−i)p

w
i (g

mk)|ti] − gmk
i (ti). By the mono-

tonicity of g and Helly’s selection theorem, we can obtain E[ωi(g
ml
i , t−i)p

w
i (g

ml)|ti] →
E[ωi(gi, t−i)η

∗
i |ti] {nl}∞l=1 is a proper subsequence of {nk}∞k=1, by the dominated conver-

gence theorem, where η∗i : [0, 1]
n → [0, 1].

By the same arguments as the proof of Inequality (22), we can show that

lim
l→∞

Vi(g
ml
i (ti), ti; g

ml
−i ) ≤ sup

bi∈[bi,bi]∪{Q}
Vi(bi, ti; g(·)).

Finally, we repeat the proof from Step 3, and we can show that the probability of two or
more players simultaneously submitting the highest bid above Q under g is zero.

Thus, we have
lim
l→∞

Vi(g
ml
i (ti), ti; g

ml
−i ) = Vi(gi(ti), ti; g−i).

Combining this with

lim
l→∞

Vi(g
ml
i (ti), ti; g

ml
−i ) = sup

bi∈[bi,bi]∪{Q}
Vi(bi, ti; g(·)),

we conclude that g is a monotone equilibrium. This completes the proof.

8.4 Proof of Theorem 2

In this section, the game Gm, each player i’s interim payoff V m
i , an increasing strategy

profile ϕ, and the completely mixed strategy ϕmi are as defined in the proof of Theorem 1
in Section 8.1.

Recall that each player i’s payoff function ui(a, t) = ui(a, ti) depends only on the action
profile and her own type. Additionally, players’ type distributions are independent, so
f(t) = f1(t1) . . . fn(tn). For each player i, let µmi be the distribution in Ai induced by ϕmi ,
meaning that µmi (B) =

∫
Ti
ϕmi (ti, B)fi(dti), for any B ⊆ Ai. Thus, by simple algebra, we

obtain

V m
i (ai, ti;ϕ−i(·)) =

∫
T−i

∫
A−i

ui(a
m
i , a−i, ti)

∏
j∈I,j ̸=i

ϕmj (tj ,daj)
∏

j∈I,j ̸=i

fj(dtj)

=

∫
A−i

ui(a
m
i , a−i, ti)

∏
j ̸=i,j∈I

µmj (daj).

Claim 7. For each player j, there exists an increasing strategy wm
j , such that wm

j and ϕmj
induce the same distribution µmj in Aj.
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Proof. Given a distribution µmj on Aj . Let F
m
j denotes the cumulative distribution function

on Aj such that Fm
j (x) = µmj ([aj , x]).

Consider a sequence of monotone functions ψk
j : Tj → Aj defined by:

ψk
j =

k−1∑
q=1

ak,qj δ
[tk,q−1
j ,tk,qj )

+ ak,kj δ
[tk,k−1
j ,tj ]

,

where ak,qj ∈ Aj is the minimum action such that µmj ([aj , a
k,q
j ]) = q

k , and tk,qj ∈ [tj , tj ] is
the minimum type such that∫

[tj ,t
k,q
j ]

fj(tj) dtj =
q

k
, for each q ∈ {1, 2, · · · , k},

with tk,0j = tj . Since fj is atomless, we know that ψk
j is well-defined. Therefore, ψk

j is a

sequence of increasing functions, and the distribution induced by ψk
j converges weakly to

µmj . By Helly’s selection theorem, we know that {ψk
j }∞k=1 has a subsequence {ψkp

j }∞p=1 that
converges almost everywhere, with the limit function denoted by wm

j . Consequently, wm
j is

an increasing function mapping from Tj to Aj and the cumulative distribution function of
wm
j is Fm

j . Thus, we complete our proof.

Hence, through simple algebra, we obtain:

V m
i (ai, ti;ϕ−i(·)) =

∫
A−i

ui(a
m
i , a−i, ti)

∏
j ̸=i,j∈I

µmj (daj)

=

∫
T−i

∫
A−i

ui(a
m
i , a−i, ti)

∏
j∈I,j ̸=i

wm
j (tj , daj)

∏
j∈I,l ̸=i

fj(tj) dt−i

= Vi(a
m
i , ti;w

m
−i(·)).

Moreover, V m
i (ai, ti;ϕ−i(·))−V m

i (aj , ti;ϕ−i(·)) = (1− 1
m)(Vi(ai, ti;w

m
−i(·))−Vi(aj , ti;wm

−i(·))).
Since the single crossing condition holds in game G, it also holds in game Gm. Thus, game
Gm possesses a monotone equilibrium gm for eachm ∈ N. By repeating Steps 2 and 3 of the
proof of Theorem 1 in Section 8.1, we obtain the existence of perfect monotone equilibria
in game G.

8.5 Proofs of Claims 1-3

Proof of Claim 1. 1. Since player 2’s payoff function doesn’t depend on any type,
his interim payoff function V2(a2, t2; g1(·)) satisfies IDC(a2, t2) for all g1 ∈ F1,
which implies that V2(a2, t2; g1(·)) satisfies the single crossing condition in (a2, t2)
(SCC(a2, t2)) for all g1 ∈ F1. Therefore, we only need to consider player 1’s interim
payoff function in this example. Given that player 2 plays an increasing strategy

s2(t2) =

{
1 t2 ∈ [0, x2)

2 t2 ∈ [x2, 1]
,

by simple algebra, we obtain that V1(2, t1; s2(·))−V1(1, t1; s2(·)) = (74−2x2)(1+
1
6x2−

2
3 t1). Since V1(2, t1; s2(·)) − V1(1, t1; s2(·)) might not increasing in t1, V1(a1, t1; s2(·))
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doesn’t satisfy IDC(a1, t1) for all s2 ∈ F2. Additionally, since 1 + 1
6x2 −

2
3 t1 > 0 for

all t1 ∈ [0, 1], the sign of V1(2, t1, s2(·)) − V1(1, t1, s2(·)) doesn’t depend on t1. Thus,
V1(a1, t1; s2(·)) satisfies SCC(a1, t1) for all s2 ∈ F2.

2. Given that player 1 plays an increasing strategy

s1(t1) =

{
1 t1 ∈ [0, x1)

2 t1 ∈ [x1, 1]
,

by simple algebra, we have V2(2, t2; s1(·)) − V1(1, t2; s1(·)) = 10x1 − 8. Since
V1(2, t1; s2(·))− V1(1, t1; s2(·)) = (74 − 2x2)(1 +

1
6x2 −

2
3 t1), we obtain

BR1(x2) =


x1 = 0 x2 <

7

8

x1 ∈ [0, 1] x2 =
7

8

x1 = 1 x2 >
7

8
,

BR2(x1) =


x2 = 1 x1 <

4

5

x2 ∈ [0, 1] x1 =
4

5

x2 = 0 x1 >
4

5
.

Thus, the intersection of best response functions only has a unique point (45 ,
7
8). It

means that this game has a unique monotone equilibrium (s∗1, s
∗
2), where

s∗1(t1) =


1 t1 ∈ [0,

4

5
)

2 t1 ∈ [
4

5
, 1],

s∗2(t2) =


1 t2 ∈ [0,

7

8
)

2 t2 ∈ [
7

8
, 1].

3. To show this game does not possess any perfect monotone equilibrium is equivalent
to proving that (s∗1, s

∗
2) is not a perfect equilibrium. We proceed by contradic-

tion. Suppose (s∗1, s
∗
2) is a perfect equilibrium. Then, there exists a sequence of

completely mixed strategies {(gm1 , gm2 )}∞m=1 such that, for each player i, for almost
all ti ∈ [0, 1], the following conditions hold: (i) lim

m→∞
ρ(gmi (ti), s

∗
i (ti)) = 0; (ii)

lim
m→∞

ρ(gmi (ti),BRi(ti, g
m
−i)) = 0. Let ĝmi (ti) ∈ BRi(ti, g

m
−i) for all ti be a measurable

function. We will show that there exists xmi ∈ [0, 1] such that

ĝmi (ti) =

{
2 ti ∈ [0, xmi )

1 ti ∈ [xmi , 1]
.

By applying Helly’s selection theorem, we know that there exists a subsequence of
ĝmi (ti) that converges pointwise to a decreasing function ĝ∗i . Combining points (i) and
(ii), we deduce that for almost all ti, ρ(ĝ

∗
i (ti), s

∗
i (ti)) = 0. Since ĝ∗i is not an increasing

function unless it is constantly equal to 2, and s∗i is an increasing function that plays
action 1 on a nonnegligible set, we can conclude that points (i) and (ii) cannot be
satisfied simultaneously. This contradiction proves that the assumption that (s∗1, s

∗
2)

is a perfect equilibrium is false. The detailed proof is presented below.

41



Let (s∗1, s
∗
2) be the unique monotone equilibrium, where

s∗1(t1) =


1 t1 ∈ [0,

4

5
)

2 t1 ∈ [
4

5
, 1],

s∗2(t2) =


1 t2 ∈ [0,

7

8
)

2 t2 ∈ [
7

8
, 1].

We will demonstrate that (s∗1, s
∗
2) is not a perfect equilibrium. To do so, consider a

perturbation of player 2’s strategy s∗2, denoted as gm2 , where

gm2 (t2) =


(1− ϕm(t2))δ1 + ϕm(t2)δ2 t2 ∈ [0,

7

8
)

(1− ϕm(t2))δ2 + ϕm(t2)δ1 t2 ∈ [
7

8
, 1].

Similarly, a perturbation of player 1’s strategy s∗1 can be defined as

gm1 (t1) =


(1− ψm(t2))δ1 + ψm(t2)δ2 t1 ∈ [0,

4

5
)

(1− ψm(t2))δ2 + ψm(t2)δ1 t1 ∈ [
4

5
, 1].

Since V1(2, t1; s
∗
2)− V1(1, t1; s

∗
2) = 0. By simple algebra, we have

V1(2, t1; g
m
2 )− V1(1, t1; g

m
2 )

=

∫ 7
8

0
[u1(2, 2, t1, t2)− u1(2, 1, t1, t2)]ϕ

m(t2) dt2

+

∫ 1

7
8

[u1(2, 1, t1, t2)− u1(2, 2, t1, t2)]ϕ
m(t2) dt2

−
∫ 7

8

0
[u1(1, 2, t1, t2)− u1(1, 1, t1, t2)]ϕ

m(t2) dt2

−
∫ 1

7
8

[u1(1, 1, t1, t2)− u1(1, 2, t1, t2)]ϕ
m(t2) dt2

=
[∫ 7

8

0
(
7

6
t2 −

7

24
)ϕm(t2) dt2 −

∫ 1

7
8

(
7

6
t2 −

7

24
)ϕm(t2) dt2

]
−
[∫ 7

8

0
(−2 +

1

2
t2 +

4

3
t1)ϕ

m(t2) dt2 −
∫ 1

7
8

(−2 +
1

2
t2 +

4

3
t1)ϕ

m(t2) dt2

]
=

∫ 7
8

0
(
2

3
t2 −

4

3
t1 +

41

24
)ϕm(t2) dt2 −

∫ 1

7
8

(
2

3
t2 −

4

3
t1 +

41

24
)ϕm(t2) dt2

= (
41

24
− 4

3
t1)

[∫ 7
8

0
ϕm(t2) dt2 −

∫ 1

7
8

ϕm(t2) dt2

]
+

2

3

[∫ 7
8

0
t2ϕ

m(t2) dt2 −
∫ 1

7
8

t2ϕ
m(t2) dt2

]
.

Let Xm =
∫ 7

8
0 ϕm(t2) dt2 −

∫ 1
7
8
ϕm(t2) dt2, Y

m =
∫ 7

8
0 t2ϕ

m(t2) dt2 −
∫ 1

7
8
t2ϕ

m(t2) dt2.
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Since Y m <
∫ 7

8
0

7
8ϕ

m(t2) dt2 −
∫ 1

7
8

7
8ϕ

m(t2) dt2 = 7
8X

m, we conclude that Xm and Y m

can not be 0 at the same time, meaning that V1(2, t1; g
m
2 ) − V1(1, t1; g

m
2 ) cannot be

0 for all t1 ∈ [0, 1]. Moreover, if Xm ≤ 0, then Y m < 0. And hence V1(2, t1; g
m
2 ) −

V1(1, t1; g
m
2 ) < 0 for all t1 ∈ [0, 1]. Thus, V1(2, t1; g

m
2 )−V1(1, t1; gm2 ) cannot be a strict

increasing function of t1 such that it can start at a negative value at t1 = 0 and achieve
a positive value for some t1 ∈ [0, 1]. In other words, V1(2, t1; g

m
2 )−V1(1, t1; gm2 ) might

be negative for all t1 ∈ [0, 1] or a decreasing function in t1. Let ĝm1 be a measurable
selection of BR1(g

m
2 ). Since BR1(t1, g

m
2 ) has a unique element for almost all t1, ĝ

m
1 is

unique defined for almost all t1. Then, there exists xm1 ∈ [0, 1] such that

ĝm1 (t1) =

{
2 t1 ∈ [0, xm1 )

1 t1 ∈ [xm1 , 1].

Suppose (s∗1, s
∗
2) is a perfect equilibrium, then there exists a sequence of com-

pletely mixed strategies {gm2 }∞m=1(resp. {gm1 }∞m=1) such that for almost all t2 ∈
[0, 1](resp. t1 ∈ [0, 1]), lim

m→∞
ρ(gm2 (t2), s

∗
2(t2)) = 0(resp. lim

m→∞
ρ(gm1 (t1), s

∗
1(t1)) = 0),

and it equivalents to that for almost all t2 ∈ [0, 1](resp. t1 ∈ [0, 1]), lim
m→∞

ϕm(t2) =

0(resp. lim
m→∞

ψm(t1) = 0). Let ĝm1 be the best response function of player 1 given

that player 2 plays gm2 . As we showed above, we know that there exists xm1 such that

ĝm1 (t1) =

{
2 t1 ∈ [0, xm1 )

1 t1 ∈ [xm1 , 1].

By the definition of perfect equilibrium, we have lim
m→∞

ρ(gm1 (t1), ĝ
m
1 (t1)) = 0, for

almost all t1 ∈ [0, 1]. By Helly’s selection theorem, we know there exits a subsequence
{ĝmk

1 }k∈N of {ĝm1 }m∈N that converges pointwise to a decreasing function ĝ∗1, where

ĝ∗1(t1) =

{
2 t1 ∈ [0, x∗1)

1 t1 ∈ [x∗1, 1].

Thus, we have

ρ(s∗1(t1), ĝ
∗
1(t1)) ≤ lim

k→∞
[ρ(s∗1(t1), g

mk
1 (t1))+ρ(g

mk
1 (t1), ĝ

mk
1 (t1))+ρ(ĝ

mk
1 (t1), ĝ

∗
1(t1))] = 0,

for almost all t1 ∈ [0, 1]. However, s∗1 is an increasing function with playing actions 1
and 2 on nonnegligible sets, and ĝ∗1 is a decreasing function. Hence, ρ(s∗1(t1), ĝ

∗
1(t1)) =

0 cannot hold for almost all t1 ∈ [0, 1], which leads to a contradiction.

Proof of Claim 2. Given that bidder 1 plays the strategy b1, the expected payoff for bidder
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2, who submits bid amount a2 at his value v2, is:

V2(a2, v2; b1(·)) =



v2
3

10
· 1
2

a2 = 0

(v2 − 1)
3

10
· 3
2

a2 = 1

(v2 − 2)
3

10
· 2 a2 = 2

(v2 − 3)
4

5
a2 = 3

v2 − a2 a2 ∈ {4, · · · , 8}.

By simple algebra, we have

BR2(b1, v2) =

{
3 v2 ∈ [7, 8)

{3, 4} v2 = 8.

Given that bidder 2 always submits the bid amount 3, bidder 1’s optimal payoff will be
0 if his valuation v1 ≤ 3. For v1 ∈ [3, 5], if bidder 1 submits a bid below 3, his expected
payoff will be 0. If he submits a bid of 3, his expected payoff will be 1

2(v1 − 3) ≥ 0. If he
submits a bid a1 > 3, his expected payoff will be v1 − a1, which is at most v1 − 4. Since
1
2(v1 − 3) ≥ v1 − 4 for v1 ∈ [3, 5], we conclude that b1(v1) ∈ BR1(b2, v1) for all v1 ∈ [0, 5].
Thus, (b1, b2) is a monotone equilibrium.

Next, we will prove that (b1, b2) is perfect. For i ∈ {1, 2}, let {bmi }∞m=3 be a sequence of
completely mixed strategies of bidder i, where

bm1 (v1) =



(1− 1

m
)δ0 +

8∑
k=1

1

8m
δk vi ∈ [0,

3

2
)

(1− 1

m
)δ1 +

∑
k ̸=1

1

8m
δk vi ∈ [

3

2
, 3)

(1− 1

m
)δ3 +

∑
k ̸=3

1

8m
δk vi ∈ [3, 5],

and bm2 (v2) ≡ (1− 1
m)δ3 +

∑
k ̸=3

1
8mδk. Thus, we have lim

m→∞
ρ(bmi (vi), bi(vi)) = 0, for all vi,

for i ∈ {1, 2}. Given that bidder 1 plays the strategy bm1 , the expected payoff for bidder 2,
who submits bid a2 at his value v2, is:

V2(a2, v2; b
m
1 (·)) =



v2
1

2
[(1− 1

m
)
3

10
+

1

8m
· 7

10
] a2 = 0

(v2 − 1)
3

2
[(1− 1

m
)
3

10
+

1

8m
· 7

10
] a2 = 1

(v2 − 2)2[(1− 1

m
)
3

10
+

1

8m
· 7

10
] a2 = 2

(v2 − 3)(2[(1− 1

m
)
3

10
+

1

8m
· 7

10
] +

1

2
[(1− 1

m
)
2

5
+

1

8m
· 3
5
]) a2 = 3

(v2 − a2)[(1−
5

8m
) +

2(a2 − 4) + 1

16m
] a2 ∈ {4, · · · , 8}.
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For any m sufficiently large, the best response correspondence for bidder 2 against bm1 is:

BR2(b
m
1 , v2) =

{
3 v2 ∈ [7, 8)

4 v2 = 8.

And given bidder 2 that plays the strategy bm2 , the expected payoff for bidder 1, who
submits bid a1 at his value v1, is:

V1(a1, v1; b
m
2 (·)) =



v1
2

1

8m
a1 = 0

3(v1 − 1)

2

1

8m
a1 = 1

5(v1 − 2)

2

1

8m
a1 = 2

(v1 − 3)[(1− 1

m
)
1

2
+

3

8m
] a1 = 3

(v1 − a1)[(1−
5

8m
) +

2(a2 − 4) + 1

16m
] a1 ∈ {4, · · · , 8}.

For any m sufficiently large, the best response correspondence for bidder 1 against bm2 is:

BR1(b
m
2 , v1) =



0 v1 ∈ [0,
3

2
)

{0, 1} v1 =
3

2

1 v1 ∈ (
3

2
, 3]

3 v1 ∈ (3, 5].

Thus, we have lim
m→∞

ρ(bmj (vj),BRj(b
m
i , vj)) = 0, for almost all vj , for j ∈ {1, 2}, and hence

(b1, b2) is a perfect monotone equilibrium.

Proof of Claim 3. Given that bidder i plays the strategy bi, the expected payoff for bidder
j (j ̸= i, i, j ∈ {1, 2}), who submits bid aj at his value vj , is:

Vj(aj , vj ; bi(·)) =


0 aj = 0

(vj − 1)
1

4
aj = 1

(vj − 1)
1

2
+

(vj − 2)

4
aj = 2.

By simple algebra, we have

BRj(bi, vj) =



{0, 1} vj = 1

1 vj ∈ (1,
3

2
)

{1, 2} vj =
3

2

2 vj ∈ (
3

2
, 2],
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thus (b1, b2) is a monotone equilibrium.
For each i ∈ {1, 2}, let {bmi }∞m=3 be a sequence of completely mixed strategies of bidder

i, where

bmi (vi) =


(1− 2

m
)δ1 +

1

m
δ0 +

1

m
δ2 vi ∈ [1,

3

2
)

(1− 2

m
)δ2 +

1

m
δ0 +

1

m
δ1 vi ∈ [

3

2
, 2].

Thus, we have lim
m→∞

ρ(bmi (vi), bi(vi)) = 0, for almost all vi ∈ [1, 2], for i ∈ {1, 2}. Given

that bidder i plays the strategy bmi , the expected payoff for bidder j (j ̸= i, i, j ∈ {1, 2}),
who submits bid aj at his value vj , is:

Vj(aj , vj ; b
m
i (·)) =



vj
2

1

m
aj = 0

vj
1

m
+

(vj − 1)

4
(1− 1

m
) aj = 1

vj
1

m
+

(vj − 1)

2
(1− 1

m
) +

(vj − 2)

4
(1− 1

m
) aj = 2.

For any m ≥ 3, the best response correspondence for bidder j against bmi is:

BRj(b
m
i , vj) =


1 vj ∈ [1,

3

2
)

{1, 2} vj =
3

2

2 vj ∈ (
3

2
, 2].

Thus, we have lim
m→∞

ρ(bmj (vj),BRj(b
m
i , vj)) = 0, for almost all vj ∈ [0, 1], for j ∈ {1, 2}. It

implies that (b1, b2) is a perfect monotone equilibrium.
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